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Abstract 

In an experiment with the AFWAL/AAA AVSAIL DECsystem 10 and 
PDP 11 flight simulation equipment, redundant data bus 
transmissions were blocked to demonstrate that a large reduction 
in data bus transmissions do not degrade the effectiveness of 
real-time programs. The programs became "driven" by their input 
data rather than being "driven" by the synchronous, time-based 
interrupts. The experiment produced three major results: The 
first was that currently optimized real-time software does not 
have impaired performance with a hardware-enforced 80 to 90 
percent reduction in its data flow. The second was that currently 
optimized executive and application software generates 
considerablly more data than is optimal for the execution of the 
real-time software. The third was that the optimal software 
structure using AVSAIL generation hardware and software has 
reached its technological limit. The next generation or 
rule-based, causality software is emerging from the previous 
generation of deterministic, synchronous software in the need for 
Data-Driven operating systems and architectures. A description is 
given for construction of a Data-Driven Operating System to take 
advantage of reduced data bus transmission rates required by the 
real-time software in order for the software to be "driven" by the 
production of data rather than synchronous, time-based, interrupt 
schemes currently in use. A design combination using Data-Driven 
computer architecture and a Data-Driven Operating System is 
explored providing 80 to 90 percent reduction of data bus loads 
with an estimated 50 to 60 percent reduction in central processor 
processing loads. 

1.0 Scope Of Paper 

This paper is written to introduce the networking system 
concepts, hardware architecture, and software concepts for 
fabrication of a data-driven system network. As the network has 
not been prototyped, only the functional attributes of 
data-driving are discussed. When specific hardware, processor 
timing, and system capacities are mentioned in this paper these 
data are extracted from the component manufacturer's data 
handbooks. 
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2.0 Introduction 

Recent system performance measurements indicate that nearly 
90 percent of real-time system avionics computer processing power 
is wasted. Future computer architecture designs will probably 

,realize an order of magnitude improvement in processing speed by 
. using parallel processing schemes, but these architectures still 
do not approach the wasted computer power problem now evident in 
real-time systems. The data-driven architecture described in this 
paper will allow current and future real-time computer systems to 
operate nearly an order of magnitude faster with features that 
promote revolutionary real-time system concepts. 

There are conceptually three layers to the data-driven system 
(Figure 1). The outermost layer is the system functionality; how 
the complete data-driven system operates to complete a mission. 
The middle layer is the dissection of the system into its Local 
Area Network (LAN) configuration, while the lowest level of the 
system is the data-driven node itself. Further dissection is 
possible internal to the data-driven node and will be covered by 
this paper. 
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Figure 1. Layers of a Data-Driven System. 
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The data-driven terminology used in this paper implies that 
appropriate software is executed on its processor when data inputs 
to the software computation change their value by significant 
amounts. The term "data-driven" is used to denote the control 
method for the exchange and transmission of data on an inter- and 

·intra-processor level for control of an entire computer system 
through the exchange of new/relevant data between computational 
processes. In the context of this paper the term "data flow" 
should not be associated with the term "data-driven." Data flow is 
the method of partitioning the actual computational algorithms 
across two or more physical processors and does not control 
passage of data between processes, or contribute to system 
control. 

3.0 Data-Driven System Network 

3.1 Data-Driven System Requirements And Design ~k~tch 

After observing current network capabilities and program 
operation deficiencies in the real-time arena, the requirements 
and design of the data-driven information network for multiple 
real-time computer systems were formalized from an optimized blend 
of real-time applications of available network components. The 
requirements are: 

1. Shared memory emulation. To the host computer operation 
software, the network must appear as a shared memory unit 
which implies that the network is nearly transparent. 
This permits autonomous or near-autonomous program 
execution. Reads and writes to the shared memories shall 
require no more host CPU time than conventional shared 
memories (0.5 to 1.0 microsecond). To increase the 
throughput of the distributed shared memory, a copy of 
the shared memory is to be located at each networked 
computer. Shared memory reads would involve only the 
computer's locally owned copy of the distributed shared 
memory while shared memory writes would update all copies 
of the distributed shared memory. 

2. Serial linking. To avoid bulky and limited distance 
shared memory cables, high speed fiber-optics shall be 
used. The shared memory transfer times are accommodated 
and the distance between computers can be up to 10 
kilometers. 

3. Information-only transfer. To increase the efficiency of 
the network, the only items transmitted on the network 
are data variables that have been updated, or written to 
with new values. These new values are termed 
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"information." A data variable can only acquire a new 
value as a result of a write action by a CPU, or direct 
memory access, to the particular data variable. 
Therefore only write actions instigating new data 
variable values can instigate a network transmission. 
The information-only transfer gives birth to the 
data-driven concepts for the entire system architecture. 
It should be remembered that in conventional real-time 
systems, the majority of write actions to shared data 
variables' do not modify the variable value but still 
demand a network transmission. 

4. Data addresses through vectored interrupts. When a 
computer receives information from the network, an 
interrupt shall be generated by the rece1v1ng node 
hardware directing the rece1v1ng computer to the software 
needed to process the information. This technique is 
employed to increase efficiency and to m1n1m1ze the 
response time of the reacting software program. 

With these requirements in mind, the 
design of the serially linked, shared 
depicted in Figure 2. 

initial block diagram 
memory ring network is 

NJ U • ~etwork 
Interface 
Unit 

Figure 2. Serially Linked, Shared Memory aing Betwork. 

5 



This block diagram illustrates the major component configurations: 

1. Serial Communication Scheme 

2. Serial/Parallel Transmission and Reception 

3. Distributed Shared Memory 

4. Information Detection 

5. Data Addressing Through Vectored Interrupts 

4.0 Data-Driven Hardware Architecture 

At first glance, the data-driven architecture looks very 
similar to a standard distributed multi-microprocessor system with 
a LAN interconnection scheme. However, there are two primary 
innovations in the data-driven hardware architecture. The first 
innovation is the hardware and data structure of the data-driven 
LAN (DDLAN), and the second innovation is that the hardware 
structure of each data-driven processing node is designed to 
provide optimum support to the Data-Driven Operating System 
software. The details of the data-driven processing node 
structure are described in the following sub-sections. The 
general form of the data-driven architecture is a ring network 
with nominally sixteen nodes. While the network protocol could be 
modified for more nodes, it is not likely that more than sixteen 
nodes will be used in an avionics application. 

4.1 General Form Of The DDLAN. 

The data-driven network uses a single line asynchronous 
slotted-ring manchester protocol (nominally 25 megabits/second) 
with distributed network control. The network is fiber-optic 
based where each node has a fiber-optic bypass switch so that 
off-line nodes do not interrupt the ring network. The network 
protocol is designed to support dynamic network reconfiguration 
with a 5 millisecond data stoppage and automatic recovery. 

4.2 The Data-Driven Processing Node. 

The Data-Driven Processing Node (DDPN) is actually a dual 
processor configuration consisting of a Data-Driver Processor 
(DDP) and a Main Processor. For the purposes of initialization 
the data-driver is a slave processor. However, in normal 
operation, the two processors are asynchronous with communication 
through FIFO process queues and dual-port data table memory. All 
process variables are stored in the data table common memory along 
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with each variable's process control descriptors. While logically 
a single common memory, the data table is physically distributed 
between different portions of the node. 

4.2.1 Data Table Monitor. 

Two embedded hardware functions that operate independently of 
the system software are the key to the data-driven node. The 
first embedded function is the Data Table Monitor (DTM) which is 
invisible to the Main Processor. Its function is to trap any Main 
Processor write to a global variable's address where the new value 
is different from the old value. This results in the new value 
and that value's address being loaded into the input FIFO queue of 
the Vector Driver, which is the second embedded function. 

4.2.2 Vector Driver. 

The Vector Driver input queue is always loaded with 
address/data pairs received from the DDLAN along with the node's 
internal address/data pairs. The Vector Driver uses the address 
of the address/data pair, plus an offset, as the address of a 
look-up table entry to obtain the vector of the Data Driver 
routine that is to handle the associated global data variable. 
This new vector/data value is then loaded onto the Data Driver 
processor's input FIFO queue. As a vector/data pair come to the 
top of the input queue, the pair is dequeued and used in the 
routine that jumps to the appropriate Data Driver routine for that 
data type. The process continues until the queue is empty at 
which time the routine stays in a busy-wait with interrupts 
enabled. The handling of the Data Driver and Main Processor FIFO 
queues is "ready" status driven with provision made for program 
interrupt-on-ready or a "watch-dog" service time-out on "ready" 
interrupt. 

4.2.3 Data-Driven Local Area Network. 

An example of the data-driven architecture is shown in Figure 
3. This example could be applicable to a real-time distributed 
avionics system or a distributed real-time simulation system. 
Individual DDPNs might have local input/output functions to a low 
order servomechanism. 
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4.2.4 DDPN Processing Speed. 

The basic requirement of the DDPN is that the DDP must 
process the incoming data flow faster than the Main Processor. 
The DDP must also be able to handle all data types used in the 

'distributed system. While these requirements could be met by a 
raw processing speed difference, the DDP routines are designed to 
be very short with simple arithmetic functions compared to the 
Main Processor's computational routines. Thus where the DDP and 
the Main Processor have equal throughput, the difference between 
average and worst-case DDP/Main Processor service routines can be 
handled by adequate queue lengths with queue-overflow fault 
handling routines. 

4.3 Specific DDPN Hardware Components. 

The data-driven architecture is very compatible with future 
high speed processors. A prototype DDPN could be implemented with 
any of the latest commercial single-card microprocessors with full 
arithmetic capabilities (i.e. fixed and floating point data 
types) and with any system bus structure. Hovever the practical 
"form-fit" aspects of implementing a double system bus within each 
DDPN limit the reasonable choice of a node bus to the VME(A24Dl6) 
or DEC Q22BUS type buses. The memory management structure of a 
particular microprocessor has a synergistic effect on the 
implementation of data-driven software. Based on current 
availability, the best CPU for a data-driven prototype would be 
the National Semiconductor 16032 Microporcessor (with floating 
point data types and memory management) using the VME bus. The 
second choice of equipment for prototype fabrication is the DEC 
KDJll-A (LSI 11/73) Microprocessor using the Q22BUS. 

For the purpose of simplicity, futher discussion of the 
data-driven prototype will assume use of the KDJll-A and Q22BUS. 
A block diagram of the DDPN is shown in Figure 4. The KDJ11-A is 
used as the CPU for both the Main Processor and the DDP. The Main 
Processor has significantly more system resources than the DDP to 
handle the complex computational algorithms. 
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4.3.1 DDP And Main Processor Interconnections. 

There are three levels of interconnection between the DDP and 
the Main Processor. The first level is for initialization and 
basic control. A design feature of the KDJll-A is that it 

·contains microcode support for a console terminal that can modify 
memory and start programs. Using the first interconnection level, 
the DDP can act as "system operator" of the Main Processor as well 
as providing for eight crosslinked, maskable program interrupts 
for each CPU. These interrupts can be set via software in the DDP 
CPU. 

The second level of interconnection is via "read-windows." 
Each of the CPUs can read the memory contents of the other CPU via 
a register-mapped window. This allows each of the node's CPUs to 
check the status of the flags in the other CPU as well as read 
data blocks from the other CPU. 

The third level of interconnection is at the data-driven 
level. At this level, communications are a function of the Data 
Table Common Memory and the FIFO process queues. The software of 
each CPU is normally "queue-ready-status" driven, but both process 
queues have provisions for program interrupt on either queue-ready 
or service-time-out interrupt on the queue-ready. 

4.3.2 Data Table Common Memory Requirements. 

The size of the data table in each DDPN must be identical or 
larger than the total number of defined variables in the entire 
DDLAN. If a particular node does not use a variable, then the 
pointer that is defined in the Vector Driver look-up table must be 
null so that the software can discard that data reference and not 
waste time and queue space by loading the vector/data pair onto 
the DDP input FIFO queue. For prototype purposes a maximum of 
4096 entries in the Vector Driver look-up table (a 12 bit address) 
is sufficient; although the hardware can be adapted for another 
table limit. 

4.4 Time Input To The DDPN. 

An important aspect of data-driven operation is that time is 
an explicit variable in all operations. This is radically 
different from traditional synchronous software where time is 
implicit in interrupt processing. Time is handled by the Local 
Time Reference Module connected to the Main Processor. For 
example, if there are six time intervals of interest to the 
computational algorithms where each interval is a multiple of 
clock ticks, six data table entries are defined as time variables 
where intial values define interval relative phasing and the 
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significance threshold determines the period. 
the Local Time Reference Module writes current 
time variables by direct memory access. 
sigificant time variables being processed by 
Main Processor as time becomes relevant 

On each clock tick, 
time to the six 

This results in the 
the DDP and then the 
to the computational 

this occurs without ,algorithms in the Main Processor. All 
interrupt to the Main Processor. 

4.5 DDLAN Packet Switching Emulation. 

A final point on the DDPN, indirectly related to the 
data-driven operation, is the Main Processor's additional 
interface allowing the DDLAN to emulate a message packet-switching 
network for node-to-node block transfers of data as a background 
task to the normal data-driven transfers. This function allows 
the downloading of the system and application software from an 
external mass memory. 

4.6 The Data-Driven Local Area Network. 

The basic structure of the DDLAN is a unidirectional serial 
ring topology where a configuration bypass switch is provided for 
each node in the ring. A serial ring topology is ideal for 
data-driven operation since all new data transmitted on the DDLAN 
must be received by all nodes. Selection of the data to be 
processed within that node is accomplished by the internal 
data-driver software. Conceptually the DDLAN may be viewed as a 
continously circulating series of data slots (Figure 5). Each 
node receives slots from its predecessor node and transmits them 
to the successor node. In a simple sense, all slots are either 
empty or full. When a node receives an empty slot, the node has 
the option of filling the slot with an address/data pair before 
retransmission of that slot. When the filled slot has circulated 
around the ring back to the source node, the slot is converted to 
empty and is passed on to a successor node. When a node receives 
a full slot from any other node, the address/data packet is copied 
to the Data Driver FIFO before slot retransmission. Because of 
the transmission of an individual address (pointer) with each data 
value, a DDLAN is only about 50 percent efficient for any given 
network bandwidth. However, experimental testing on a 
synchronous, distributed, multiprocessor system (AFWAL AVSAIL) has 
shown that, conservatively, 80 percent of the data flow packet 
switching information is redundant (i.e. has no information 
value). Thus a DDLAN would only require about 40 percent of the 
transmission bandwidth required by the equivalent data flow packet 
switching network. For a given network bandwidth, elimination of 
transmitting redundant data provides about 250 percent more 
informational data transfers than a data flow packet switching 
network. This improvement in efficiency easily justifies the 
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increase in hardware complexity required to support data-driven 
networks. 

I 
M , 
' T 

Figure 5. DDLAN as a Circulating Serie1 of Data Slots. 
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The DDLAN ring approach has major advantages over alternative 
network architectures. The advantages are: 

1. Distributed control with optional node by-passing for 
fault tolerent operation. 

2. Highly efficient use 
transmission bandwidth. 

of the available network 

3. Improvement in the ease of expanding a network's node 
count. 

4. Automatic equal distribution of the available bandwidth 
among all network nodes contending for DDLAN access with 
hardware contention resolution. 

5. All nodes "see" common data which eases partitioning and 
distribution of system and application software. This 
allows all real-time evaluation data acquisition 
functions to be centralized in a single network node. 

6. The DDLAN can perform a hardware emulation of a 
node-to-node packet switching network as a background 
task to data block transfers. 

7. The DDLAN is ideal for fiber optic implementation which 
provides a higher bandwidth network while minimizing 
physical distance and routing problems of a distributed 
network. 

4.6.1 The DDLAN Packet Format. 

DDLAN is best explained by a discussion of an implementation 
prototype. The basic data slot structure is a 36-bit, 
manchester-encoded time slot where all slots are separated by a 
m1n1mum of two-bit transmission times for a 1.5-bit time time-out 
as explained below (Figure 6). Each DDLAN receiving node must 
view slot reception as an asynchronous operation. Due to the 
small size of information packets, the DDLAN can not afford the 
long synchronization preambles used in serial packet switching 
networks. 
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Figure 6. DDLAN Data Slot Structure. 

The basic DDLAN slot consists of a 3-bit synchronization 
pattern that identifies "start-of-slot" and "type-of-slot", 
32-bits of information, and a parity bit. The synchronization 
pattern is one of three readily detected invalid manchester 
patterns which identify a slot as either an empty slot, a full 
slot, or a message slot. For all slots the parity bit is based on 
the 32-bit field with all subfields being transmitted most 
significant bit first. 

The information field for a full slot would be a 4-bit source 
node identification, followed by a 12-bit address (pointer), 
followed by a 16-bit data word. Execept for the fault condition 
described later in the node protocol definition, an empty slot has 
the same format as the full slot with the pointer and data as 
zero. 

The message slot has an information field of a 4-bit source 
node identification, followed by a 4-bit target node 
identification, followed by a "start-of-message" flag, followed by 
an "end-of-message" 
flag, followed by 2-bits reserved for future use, followed by 
16-bits for a "count-down-byte-of-message" counter, followed by 
8-bits of data. 

No commercially available network systems are suitable for a 
data-driven prototype. A prototype has yet to be built and should 
have the highest practical bandwidth available. Commerical 
asynchronous manchester decoders currently only support data rates 
up to 2.5 megabits/second. A design by Mr. Bague bas been 
developed based on newly available components (normally used in 
radar) that would allow asynchronous manchester decoding with 80 
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percent confidence of acheiving 25 megabits/second and 99 percent 
confidence in acheiving 15 to 20 megabits/second transmission. 
The design is based on use of nanosecond programmable delay lines 
and two-level enabled edge synchronized 50 megahertz (25 megabit 
data) Schottky Square Wave Generator Modules (part number: 

.MDSWGM-TTL-50 from Engineered Components Company). These 
_components are being obtained to verify this design. The design 
operates by using the manchester waveform to reconstruct the 
manchester phase-clock waveform synchonized to the manchester 
waveform to ~ 5 percent instantaneous accuracy at 25 megabits. 
Lower data rates of course give better accuracy. This same design 
also provides recognition of manchester activity time-out in 1.5 
bit transmission time which is the reason for the 2-bit minimum 
gap between slots. This gap also prevents decoding errors from 
propagating into succeeding slots. The reconstructed phase-clock 
allows the manchester waveform to be converted into a sequence of 
edge transitions for "data-one", "data-zero", "phase-one", 
"phase-zero" and/or a missing transition (either of: 
data/phase/one/zero). 

This technique allows for detection of the synchronization 
waveform types, reconstuction of the information, and simultaneous 
checking for correct manchester format. Besides format testing, 
the slot information field is also tested for parity and for 
having the correct data bit count before the slot gap is detected. 
Prior use of this technique indicates that it provides hardware 
detection of all transmission errors to a confidence level of at 
least 99.99999 percent (the "7-nines Confidence Level"). 

4.6.2 Implementation Of The Fiber-Optic Node Bypass Switch. 

The choices in the fiber-optic field are still somewhat 
limited due to the low number of manufacturers, however Frequency 
Control Product, Incorporated produces an ideal optical bypass 
switch in their Model SW-T2; which comes in two versions. 

Model SW-T2 is electrically activated with spring-return­
-to-bypass. This version allows node attachment control by the 
node with automatic power-off line bypass. Model SW-T2F is a 
bistable latching version where state switching is accomplished by 
steered current pulses. This version allows the on-line/off-line 
condition of one node to be controlled by other nodes. For 
prototype purposes the selection is for the SW-T2 model. It 
should be noted that the SW-T2 switches states in 5 milliseconds 
and that no optical information will pass during the switching 
transient. This characteristic as well as "optical-switch-bounce" 
can be handled automatically by the DDLAN protocol. 
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4.7 DDLAN Protocol. 

The DDLAN protocol is identical in all nodes. There are two 
parameters effecting node operation that are programmable within 
each node. These parameters are "slot-wait-count-for-echo" and 
"error-retry-counter." While it is feasible to have hardware 
detection of network activity within each node, it is recommended 
that polling be done for all possible nodes through data-driven 
system software or through the DDLAN packet switching mode. The 
following are the DDLAN protocol rules in descending order of 
importance. Each slot contains the node identification of the 
last node that-created/used that DDLAN slot. 

o If no input is detected for 32 slot times, transmit empty 
slots with an all ones address (pointer) until input is 
received. Proceed to the next protocol. 

o If no input is detected for one slot time, transmit one 
empty slot. 

0 If an empty 
received, 
retransmit 
slot (i.e. 

slot with all ones address (pointer) is 
abort data transmissions in progress, 

received empty slot, and wait for normal empty 
all zeros). 

o If a normal empty slot is received and the transmission 
queue is more that half full, destroy the empty slot. 

o If a slot is received with error, destroy the slot. Note 
that failure to recongize the slot synchronization 
waveform will have the same effect as this protocol. 

o If more than 32 slots are received while waiting for echo 
of a node's last transmitted full slot or message slot, 
decrement the retry counter. If the counter underflows, 
notify the Data Driver processor of a network fault, else 
restore the information field for a transmission retry. 

0 If a full/message slot is received that 
"stored-last-node" transmission, destroy 
transmit an empty slot. 

matches the 
that slot and 

o If a full slot is received with a different node 
identification, copy the information field to the Vector 
Driver and retransmit the full slot. 

o If a message slot is received with a matching target node 
identification, copy the information field to the Main 
Processor message interface and retransmit the message 
slot. 
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o If an empty slot is received while the node is waiting 
for a full slot or message slot echoing from a prior 
transmission, the empty slot is retransmitted. 

o If an empty slot is received when a data-driven 
address/data output is ready or a message field is ready, 
destroy the empty slot and transmit the appropriate full 
slot or message slot. Then inhibit further use of empty 
slots until the echo matches or time-out occurs. The 
data-driven output has priority over the message output. 

5.0 Software Concepts 

5.1 The Logical Structure Of The Data Driven Node. 

In Figure 7 the logical structure of the DDPN shows that the 
correspondence between the physical components comprising the node 
have almost a literal mapping to the software control entities 
compr1s1ng the Data Driven Operating System (DDOS). The Vector 
Processor (Vector Processor Operating System -- VPOS), the Main 
Processor (Main Processor Operating System -- MPOS), and Data 
Driver (Data Driver Executive System -- DDES), are control 
entities that contain system software operating at increasing 
levels of complexity. 

Logically the Vector Processor consists of an input FIFO 
queue, a vector table and VPOS primatives which reside in RAM, and 
an output FIFO. These components are manipulated by the DDPN's 
most rudimentary system software; the VPOS. Its limited 
functions provide intelligent facilities for one-to-one mapping of 
global data addresses to Data Driver primatives. 

The Main Processor's logical composition is defined as an 
input FIFO from the Node Bus, a data table read/write window for 
the two port data table RAM, and the local memory RAM containing 
the computational processes and the MPOS primatives. The Main 
Processor has the next level of complexity in operating systems 
(indeed a quantum level increase) by its primatives being able to 
control a multiprogrammed environment. 
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The logical composition of the Data Driver is similar to the 
Main Processor. The Data Driver has an input FIFO from the Vector 
Processor, a data table read/write window for the two port data 
table RAM, a FIFO buffer to the System Bus, and a local RAM which 
contains the logical control primatives for the Main Processor and 

'the DDES primatives. The most important control software of the 
-DDPN is the DDES. This system software is simple in its 
organization to allow high throughput. The system is based on a 
prioritized, batch-queue model in which the greatest amount of 
throughput is the design goal. It is in this executive that the 
software compliments the hardware. By placing all logical program 
decisions for the particular node's mission software into a 
separate processor, the computational processes executing in the 
Main Processor can continue without interrupt. This is the 
premise upon which the DDPN system software is built. 

The necessity of interprocessor communication, and the 
facility to conduct autonomous processing per DDPN, is provided by 
the Node bus. Bus usage follows DEC Q22BUS protocol. It is 
important to note here that there is a "short-circuit" in the 
usage of the Node Bus. The Data Table Monitor allows the Vector 
Processor to receive DMA interrupts from the Main Processor 
without any usage of the Node Bus. This is a simple and effective 
means of keeping the logical control of the DDPN at real time 
speeds. System software for this design feature is provided in 
the Vector Processor. This software allows "tagging" of the data 
as being internally or externally generated. 

5.2 The Data Driven Concept Of Information Management. 

In the data-driven system there are two kinds of data. The 
first is called Information because it types the data as having 
relevant importance to a computational process. The second is 
called Redundant because it types the data as being of no value to 
a computational process. The importance of information to a 
computational process is expressed as time, summation, or delta 
critical. Time critical information is data which must reach the 
computational process at fixed delta times. Summation critical 
information is data that is summed to form a value that triggers 
an event. Delta critical information is data that must be 
significantly different from its previous value in order to 
trigger an event. 

In the data-driven system a computational process' cycle of 
execution is based on its sensitivity to the generation of 
information data. To control the redundant data from causing 
needless cycling of the computational processes, a method bas been 
developed that filters data both external and internal to the 
DDPN. 
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5.2.1 Transmission Of Information Data i Blockage Of Redundant 
Data. 

There are two stages in filtering data for information data 
control. The Vector Processor filters data in a pre-comparison 

,state where the data is not checked for information value and the 
-Data Driver filters data in a post-comparison state where the 
information content of the data is known. 

The primatives of the Vector Processor operate on a data 
packet coming from the System Bus or Main Processor filtering it 
before it is placed onto the Data Driver's input FIFO. To 
determine if the recipient node has need of the data in the data 
packet, the primatives use the address (pointer) in the data 
packet plus a fixed offset as the address of a vector table entry. 
If the entry is non-null (i.e. not all zeros) the vector table's 
entry -- a 32-bit address of the Data Driver data comparison 
primative, the data packet 12-bit address (pointer)/ 16-bit data 
pair, and 4-bit packet indicator -- are loaded onto the 32-bit 
wide FIFO buffer as two long words (Figure 8). This process is 
the same for a Main Processor DMA detection except that the 12-bit 
address field is set to all zeros and the packet indicator is 
different. 

The Data Driver's data comparison primatives are dispatched 
by a tight-loop entry primative that uses the vector table data 
(the 32-bit address of the Data Driver data comparison primative) 
to jump to the appropriate comparison primative. The primative is 
specific for that particular data's machine representation data 
type and output destination. The data table record entry is 
updated (as prescribed by the data table record's entry indicator 
bits). If the data is informational data, the comparitor 
primative signals that the new data is to be placed on either the 
Main Processor input FIFO queue or the DDPN output FIFO queue for 
transmission to all nodes on the DDLAN (based on the data 
comparitor primative called). Control is then returned to the 
DDPN's entry point tight-loop primative. If the data is redundant 
data, the data table record entry is updated (as prescribed by the 
data table record's entry indicator bits) and control is returned 
to the tight-loop primative. 
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Figure 8. Data-Driver Input FIFO Structure. 

A reduction in the number of primatives needed by the Data 
Driver is accomplished by using the 12-bit address (pointer) of 
the global data's data comparison primative as a qualifier for 
selection of the current data table entry. Selection of the 
appropriate entry is done through a subtable of data table entries 
based on the 12-bit pointer internal to the routine. Therefore 
the amount of primatives needed by the Data Driver for comparing 
data for the Main Processor's 
computational processes will be based on the total amount of 
different machine data types in use by the application software's 
global variables in the Data Driven System. 
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5.2.2 Separation Of Process Logic And Computational Logic. 

The difference between process logic and computational logic 
in conventional programming is bounded by a thin fluid definition. 
The following definition is used for distinguishing between these 

·two logics in data-driven software. 

Process logic is programming logic which 
determines the execution of single function 
code modules. A single function code module 
has no external calls and branches only within 
its own local block. 

Example: 

begin PROCESS_LOGIC 

case CALLING_FUNCTIONS is 

when TEST=> TESTING(TESTING_DATA); 

when MISSION => MISSION_START; 

when others => raise MISSION_ABORT; 

end case; 

end PROCESS_LOGIC; 

Computational logic is the programming logic 
that determines the method of data computation 
based on no other information other than the 
value of the data being computed. 
Computational logic can cause branches within 
single function code blocks. 

Example: 

begin COMPUTATIONAL_LOGIC 

for KOUNTER in 1 to 20 loop 

X :• X+ 1; 
Y :• SQRT(X); 

end loop; 

end COMPUTATIONAL_LOGIC; 
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A Data Driver's data comparison primatives control the 
process logic of the Main Processor by only scheduling a process 

.for execution when that process has information data. Control is 
.exercised through updating the data table record entries through 
accepting data from the Data Driver input FIFO. The Main 
Processor never initiates a process on its own, but it has the 
primative operations to reschedule processes that it currently 
has. The Main Processor's function is to execute computational 
processes given it by the DDES without concern by the application 
code as to whether the process should be scheduled at that time or 
not (decision logic removal). 

An analogy to this type of process control would be the 
nerve-terminal, ganglia, and cerebellum relationship in 
vertebrates. If the nerve-terminal receives a stimulus and the 
ganglion relates the stimulus to a condition know as "pain" to the 
vertibrate, then the 
reaction of the muscles to contract is not controlled by a 
cerebral action but an a'priori ~action of the ganglion. The 
relation in the DDPN would have the nerve-terminal as the Vector 
Driver, the ganglion as the Data Driver and the cerebellum as the 
Main Processor. 

5.2.3 Data Table Use And Format. 

Data-driven control of the Main Processor is accomplished 
through the use of the data table. As previously described, the 
two 32-bit long words are queued by the Vector Processor onto the 
Data Driver's input FIFO and are dequeued by the entry point 
tight-loop primative. From the 4-bit indicator the data is 
determined to be either internally or externally generated data. 
If the data is internally generated then the value of the data is 
not passed on the FIFO queue, but its address is passed through to 
the Data Driver When the data is external, as specified by the 
4-bit indicator in the low order word placed on the FIFO queue, 
then the 16-bit portion(s) of the data is passed on the FIFO queue 
(Figure 9). 
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0 0 1 1 1 word internal data 

from 
0 1 0 1 2 word internal data 

local 
1 0 0 1 3 word internal data 

DDPN 
1 1 0 1 4 word interna 1 data 

0 0 1 0 1 word externa 1 data 

external 
0 1 0 0 2 word externa 1 data 

to 
1 0 0 0 3 word external data 

DDPN 
1 1 0 0 4 word externa 1 data 

figure 9. Decode Logic for DDP Input PIPO 4-Bit Indicator. 
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5.2.3.1 Format Of The Data Table. 

The order of the data table in which the system global data 
entries occur is very sensitive due to the use of the relational 

_position of a particular datum being an explicit offset to another 
particular datum. Even though the data table bas variable machine 
representation data and variable length records, the relational 
position of the fixed length data is used to '~alk" the table as 
described below. The data table entry format is in the order 
given. The 12-bit address (pointer) used by the Vector Processor 
is passed to the data comparison primative to differentiate 
between data table entries for data of the same machine 
representation. 

1. Call Address-- The 
computational algorithm 
(32-bit). 

address of the beginning of the 
for the data in the Main Processor 

2. Table Address -- The address of the data table data 
value. This points to the New Value entry (32-bit). 

3. True/False --The indicator that the data bas become 
significant (1-bit). 

4. Summation/Delta -- Indicates if the input data is summed 
to form the significant value and make True/False go True or 
whether the absolute difference of the Old Value and New 
Delta are to cause True/False to go True (1-bit). 

5. Less than Bottom -- Lower window value trigger bit. 

6. Less than Top -- Upper window value trigger bit. 

7. Equal to Bottom -- Lower window value trigger bit. 

8. Equal to Top Upper window value trigger bit. 

9. Bottom Value The absolute value of the window's lower 
value. 

10. Top Value -- The absolute value of the window's upper 
value. 

11. Summation-- Contains the summed values of incremental 
data values. This entry is zeroed when the process is 
scheduled for execution by the DDES primatives (8 to 64-bit). 

12. Delta from old value -- This entry tells the signed 
difference between the last data value compared and the new 
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value. This entry is set to zero when the process is 
scheduled for execution (8 to 64-bit). 

13. Old Value The value prior to update (8 to 64-bits). 

14. New Value The value after update. This is the 
location of the data for the Main Processor when it has 
become significant (8 to 64-bit). 

15. Paired Values 
are paired values 
length to allow the 
all data in the 
process. 

-- The Boolean List and Data Link Address 
in the data table. The values are fixed 

DDES system primative TREE_WALK to access 
data table that is needed to schedule a 

1. Boolean List -- tells what boolean operation is to 
be performed on the True/False bit on the following 
link address (3-bit). The list tells what operation 
as well as necessary data connectivity is needed 
when a computational process needs several data 
items becoming relevant at once. 

2. 

1. "0 0 0" AND 

2. "O 0 1" OR 

3. "0 1 0" XOR 

4. "0 1 1" NOT 

5. "1 1 1" END OF LINK (this is the 
indicator of the last address to be compared in 
a data link list.) 

Data Link Address -- The address of 
table entry containing a value used 
the information data for the process 
the process to run (32-bit). 

another data 
to determine if 
is ready for 
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5.2.3.2 Information Data Control ~The Process Lists. 

Control of the process through information data has been used 
in the above sections as an axiom. The key for controlling 
process creation is the method by which the data table is used. 

cThe number of data comparitor primatives is less than the total 
number of unique data table entries. Therefore the comparitor 
primative must first ascertain what to do with the data. In the 
following discussion the concept of data being relevant can be 
tuned by judicious choice of the "window" 
boundries Top and Bottom. These values keep the redundant data at 
the "background noise" level causing the DDPN to be less sensitive 
to the generation of data. 

When the input data enters the comparison primative the 
primative accesses the data table to find the True/False flag to 
see if any previous access has made the data relevant. If 
True/False is true the data linked list is ''walked" for that entry 
(an explanation of ''walking" follows in the next paragraph). If 
True/False is false the Summation/Delta flag is checked to 
determine the computation on the incoming data. Knowing this, the 
four boolean trigger bits (Less than Bottom to Equal to Top 
inclusive) are checked to determine the boolean tests to be made 
on the computation (Figure 10) in relation to the Top Value and 
Bottom Value. 
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.LT. B • LT. T .EQ • B .EQ. T DATA IS RELEVANT WHEN IT IS: 

1 0 0 0 .LT. BOTTOM VALUE 

0 1 0 0 .LT. TOP VALUE 

0 0 1 0 .EQ. BOTTOM VALUE 

0 0 0 1 .EQ. TOP VALUE 

1 0 1 0 .lE. BOTTOM VALUE 

0 1 0 1 .lE. TOP VALUE 

0 1 1 0 .GT. BOTTOM VALUE 

1 0 0 1 .GT. TOP VALUE 

1 1 1 0 .GE. BOTTOM VALUE 

0 1 1 1 .GE. TOP VALUE 

Fiaure 10. Decode Loaie for the Data Table Boolean Triaaer Bits. 
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If the Summation/Delta flag is true then the data is added to the 
Summation field value and the boolean operation is done. If the 
Summation/Delta flag is false the data is added to the Old Value 
to get the New Value and the boolean test is now done using New 
Value with the Top and Bottom values in the table. Note that Top 

,and Bottom can be either absolute values or delta values while 
_keeping the parameterization for the data comparison primatives 
generic. For subtraction, the data is negative. Correct sign is 
a responsibility of the application program generating the data. 
If the test is false then Summation or Delta is modified and 
True/False is set to False. If the test is true then True/False 
is set to true and the Boolean List from the Data Linked List is 
now ''walked". 

"Walking" the Data Linked List is the responsibility of the 
DDES primative TREE_WALK which uses the Boolean List (BOOL) and 
the Data Link Address (DLA) to use fixed offset addressing to 
access other data table entries that effect the scheduling of a 
process. A prioritization of DLAs is attained by ordering the 
BOOL/DLA pairs in the priority order in which the causality data 
for a process scheduling event must be checked and scheduled. 
Using the first DLA, in the BOOL/DLA list, vector to the data 
table entry and operate on the True/False flag with the BOOL 
value. This process continues until a True value is attained by 
operation of all the vectored to True/False and BOOL values. If 
true is the result, and knowing the priority of the BOOL/DLA 
pairs, DATA_ COMPARE, through TREE_WALK passes all the Call 
Addresses in the data table entries that are referenced by the 
BOOL/DLA pairs to the CREATE_PROCESS primative for dispatch to the 
Main Processor. If the result of the TREE_WALK is false, then the 
True/False flags in all the data table entries retain their state 
and the next incoming data is processed. 

The above discussion of the Data Link List describes only 
half of the power of the data table. The other half is the 
table's ability to control the transmission of data onto the 
System Bus. If the primative called was for transmission of the 
data from the node, then then data comparison primative would go 
through the same steps described above with a final call by 
DATA_COMPARE, if indeed there was a BOOL/DLA pair (the Boolean 
List may have had "111" as the first entry), to GET_BUFFER and 
WR.ITE_BUFFER primatives. If the Boolean List did have "111" as 
the first entry then the data comparison primative would have 
called GET_BUFFER and WRITE_BUFFER. 
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5.3 Control Systems Of~ Data Driven Node. 

In the previous portions of this paper, control of the data 
table has been explicitly and implicitly accomplished solely 
through system primatives that are independent of the application 

,software running in the Main Processor. In the next three 
·sections the specific primatives that make-up the system software 
for each processor in the DDPN are assembled. The functional 
descriptions are given to indicate the relationships that exist 
between the primatives. 

5.3.1 Vector Processor Operating System Primatives. 

The choice of primatives for the VPOS is limited to the most 
basic functions for processing data through the vector table. The 
primatives listed are used in the above discussion in the manner 
described in the text following each primative. 

GET_BUFFER(FREE_BUFFER_NUMBER : out BUFFER_NUMBER); 

Return an input buffer for READ_BUFFER when an interrupt 
occurs which indicates that a data arrival event has occured. 

READ_BUFFER(BUFFER : out BITS_36; BUFFER_TYPE : out BITS_2); 

Return the buffer contents 
indicator. The POINTER and 
extracted from BUFFER. 

and the 
COMPDATA 

internal/external 
contents are then 

TABLE_OFFSET(POINTER 
DRIVE_PRIMATIVE_ADDR 

in BITS_12; 
out BITS_32); 

Uses the 12-bit pointer plus offset to return the data 
comparison primative address 

PUT_BUFFER(INDICATOR 
POINTER 
COMPDATA 
DRIVE_PRIMATIVE~DR 

STATUS 

in BITS_4; 
in BITS_12; 
in BITS_16; 
in BITS_32; 
out BITS_2); 

Put data onto the Data Driver's FIFO queue. The status 
returned is an indication of how full the FIFO is becoming. 

SYSTEM_EXCEPTION(EXCEPTION : in EXCEPTION_TYPE); 

There are three exceptions defined for 
BAD_ADDRESS, OUT_BUFFER_FULL, IN_BUFFER_ERROR 

the VPOS; 
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RETRANSMIT--UFFER(NODE_ID : in NODE_TYPE); 

Sends message out onto the System Bus for retransmission of a 
data packet. 

5.3.2 VPOS States And Transitions. 

The following state and transition diagram shows the 
primative states that the Vector Processor transitions through. 
This diagram gives the states that exist at a process level in the 
system software. As data comes into the Vector Processor the VPOS 
is taken from the NULL state to the INTERRUPT state in which the 
data packet is collected. Next the VPOS enters the RUNNING state 
until the data packet, table look-up, and FIFO operations are 
complete. If there is no pending interrupt, the VPOS goes back to 
the NULL state. If there is a pending interrupt the VPOS 
immediately transitions through the NULL state to the INTERRUPT 
state (Figure 11). 

Piaure 11. VPOS States & Traneitions. 
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5.3.3 Data Driver Executive System Primatives. 

These primatives provide the essential methods for 
controlling the processes in the Data Driver. These primatives 
are used in controlling the data table for scheduling processes in 
the Main Processor. The primatives listed are used in the above 

·description in the manner described in the text following each 
primative. 

READ_FLAGS(FLAGS : out FLAG_WORD); 

To read the other CPU's status flags. 

SET_INTERRUPT(MASK 
LEVEL 
STATUS 

in MASK_WORD; 
in INTERRUPT_LEVEL; 
out BITS_ 4); 

To set the eight maskable crosslinked interrupts. 

CREATE_PROCESS(PCB_DATA : in PCB_RECORD); 

When TREE_WALK results in a True value, 
called to create a process control 
Processor. 

this 
block 

primative is 
for the Main 

DATA_COMPARE(INDICATOR 
POINTER 
COMPDATA 
DRIVE_PRIMATIVE_ADDR 

in BITS_4; 
in BITS_12; 
in BITS 16; 
in BITS=32); 

This primative vectors to the appropriate data comparison 
algorithm which uses POINTER to distinguish which data type 
specific routine is called. This primative contains its own 
SCRED_PROCS. 

GET_PID(PID :out INTEGER); 

Return the process ID for a process in the process table. 

GET_SCHED(PID : in INTEGER; PRIORITY : out INTEGER); 

Return the scheduling priority of a process in the process 
table. 

ABORT(PROCESSOR in PROCESSOR_ID; PID : in INTEGER); 

Stop a process in the Data Driver or Main Processor. This is 
used when aborting a process is desired over normal process 
termination. 
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SYSTEM_EXCEPTION(EXCEPTION : in EXCEPTION_TYPE); 

The exceptions are PROCESS_ABORT, SYSTEM_ABORT, NODE~BORT. 

PORT_COUNT(PORT_ID : in INTEGER; QUEUE : out INTEGER); 

Return the wait count for a resource at a port. 

PORT_RECEIVE(PORT_ID : in INTEGER; QUEUE_TOP : out INTEGER); 

Take the first message waiting at the port. 
QUEUE_TOP. 

Decrements 

PORT_RESET(PORT_ID : in INTEGER); 

Reset the port, signal all waiting procedures. This causes a 
cascade of procedures internal to the DDES. This is used to 
break-out of an INCREMENTAL_READY state. 

PORT_SEND(PORT_ID, PORT_MESSAGE : in INTEGER); 

Send a message to a port. Increments QUEUE. 

PORT_CLEAR(PORT_ID : in INTEGER); 

Like PORT_RESET, but does not signal the waiting processes. 
This is used with PORT_RECEIVE to get a priority message. 

SCHED_PROCS(PID, PRIORITY : in INTEGER); 

Schedule a process in the process table with a priority. The 
pocess control block is DMA written to the Main Processor's 
process queue. 

SCHED_LIST_PROCS( PID 
PRIORITY 

in PID_LIST; 
in PRIORITY_LIST); 

Schedule a list of processes in the 
priorities. The process control 
the Main Processor's process queue. 
with TREE_WALK when there is a 
scheduled. 

TREE_WALK(RESULT : out BITS_l); 

process table with their 
blocks are DMA written to 

This primative is used 
list of processes to be 

Uses BOOL_DLA to walk the Data Link list maintained in the 
data table. 
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BOOL_DLA( out BOOLEAN_LIST : BITS_3; 
out DRIVE_PRIMATIVE_foDDR : BITS_32); 

Return the Data Link information in the data table. 

RESUME_PROC{PID in INTEGER); 

Resume a DDES suspended process. 

PROC_SUSPEND(PID : in INTEGER); 

Suspend a DDES process. 

SEMA_COUNT(SEMA_NAME 
COUNT 

in SEMAPHORE; 
: out INTEGER); 

Return the count associated with a semaphore. 

SEMA_CREATE(SEMA_NAME : in SEMAPHORE); 

Create a semaphore. 

SEMA_DELETE(SEMA_NAME in SEMAPHORE) ; 

Delete a semaphore. 

SIGNAL(SEMA_NAME : in SEMAPHORE); 

Signal a semaphore to unblock a process. 

PROC_SLEEP(PID, DELTA_TIME : in INTEGER); 

Put a process to sleep for so many "ticks" of the processor 
clock. 

SEMA_RESET ( SEMA_NAME in SEMAPHORE) ; 

Reset a semaphore count to zero. 

WAIT(SEMA_NAME : in SEMAPHORE); 

Wait on a semaphore. Process is blocked. 

FREE_BUFFER{BUFFER_NUMBER : in BUFFER_NUMBER); 

Free a buffer in the "pool." 

GET_BUFFER{FREE_BUFFER_NUMBER : out BUFFER_NUMBER); 

Return an input buffer for READ_BUFFER when an interrupt 
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occurs which indicates that a data arrival event has occured. 

READ_BUFFER(INDICATOR 
POINTER 
COMPDATA 
DRIVE_PRIMATIVE_ADDR 

out BITS_4; 
out BITS_l2; 
out BITS 16; 
out BITS:32); 

Reads in the FIFO data for DATA_COMPARE. 

PUT_BUFFER(BUFFER 
BUFFER_ TYPE 
STATUS 

in BITS_36; 
in BITS_2; 
out INTEGER); 

Writes the buffer contents using the System Bus or Main 
Processor based on the BUFFER_TYPE. The POINTER and COMPDATA 
contents are included in BUFFER. 

5.3.4 DDES States And Transitions. 

The following state and transition diagram shows the 
primative states that the Data Driver transitions through. This 
diagram gives the states that exist at a process level in the 
system software. As data comes into the Data Driver, the DDES is 
in the BLOCKED state. A reschedule transition occurs to the READY 
state where DATA_COMPARE is dispatched to RUNNING. As the data 
table is accessed the DDES process goes through BLOCKED, 
INCREMENTAL-'EADY, and READY states. After the data table has 
been updated, processes scheduled for the Main Processor or System 
Bus transmission completed, the DDES transitions through interrupt 
to the BLOCKED state, waiting for a resume transition which is 
signaled by input to the DDES input FIFO (Figure 12). 
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INTERRUPT 

RESUME 

TIMED T 

TIME OUT 

Figure 12. DDES States & Transitions. 

5.3.5 Main Processor Operating System Primatives. 

These primatives provide the essential methods for 
controlling the processes in the Main Processor. As control of 
process selection comes from the DDES, the MPOS is only concerned 
in maintaining the current process. Interrupts only occur in the 
Main Processor when the process list is updated. The primatives 
listed are used in the above discussion in the manner described in 
the text following each primative. 

DEVICE_OPER(DEVICE : in DEVICE TYPE; 
DEVICE_BUMBER : in INTEGER); 

Open a channel to a physical device. 
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DEVICE_CLOSE(DEVICE_NUMBER : in INTEGER); 

Close a channel to a physical device. 

DEVICE_CONTROL(DEVICE in DEVICE_TYPE; 
COMMAND : in DEVICE COMMAND; 
STATUS : out DEVIcE_TYPE_STATUS); 

Generic control of a device. 

GET_PID(PID : out INTEGER); 

Return the process ID for a process in the process table. 

GET_SCHED(PID : in INTEGER; PRIORITY : out INTEGER); 

Return the scheduling priority of a process in the process 
table. 

ABORT(PID in INTEGER); 

Stop a process in the Main 
aborting a process is 
termination. 

Processor. 
desired 

This is used when 
over normal process 

SYSTEM_EXCEPTION(EXCEPTION in EXCEPTION_TYPE); 

The exceptions are PROCESS~BORT, SYSTEM_ABORT, NODE~BORT. 

PORT_CREATE(PORT_ID : in INTEGER); 

Allows MPOS to provide process communication ports for the 
processes' application code. 

PORT_DELETE(PORT_ID : in INTEGER); 

Allows MPOS to get rid of unneeded ports. 

PORT_COUNT(PORT_ID : in INTEGER; QUEUE : out INTEGER); 

Return the wait count for a resource at a port. 

PORT_RECEIVE(PORT_ID : in INTEGER; QUEUE_TOP : out INTEGER); 

Take the first message waiting at the port. 
QUEUE_TOP. 

PORT_RESET(PORT_ID in INTEGER); 

Decrements 
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Reset the port, signal all waiting procedures. 
cascade of procedures internal to the MPOS. 
break-out of a BLOCKED MPOS state. 

PORT_SEND(PORT_ID, PORT_MESSAGE : in INTEGER); 

Send a message to a port. Increments QUEUE. 

PORT_CLEAR(PORT_ID : in INTEGER); 

This causes a 
This used to 

Like PORT_RESET, but does not signal the waiting processes. 
This is used to get a priority message. 

RESCHED_PROCS(PID, PRIORITY : in INTEGER); 

Reschedule a process in the process table with a priority. 
The process control block is modifiable after a process list 
update interrupt occurs from the DDES. 

RESCHED_LIST_PROCS( PID 
PRIORITY 

in PID_LIST; 
in PRIORITY~IST); 

Reschedule a list of processes in the process table with 
their priorities. 

RESUME_PROC(PID : in INTEGER); 

Resume a MPOS suspended process. 

PROC_SUSPEND(PID : in INTEGER); 

Suspend a MPOS process. 

SEMA_COUNT(SEMA_NAME 
COUNT 

in SEMAPHORE; 
out INTEGER); 

Return the count associated with a semaphore. 

SEMA_CREATE(SEMA_NAME : in SEMAPHORE); 

Create a semaphore. 

SEMA_DELETE(SEMA_NAME in SEMAPHORE); 

Delete a semaphore. 

SIGNAL(SEMA_NAME : in SEMAPHORE); 

Signal a semaphore to unblock a process. 
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PROC_SLEEP(PID, DELTA_TIME in INTEGER); 

Put a process to sleep for so many "ticks" of the processor 
clock. 

SEMA_RESET(SEMA_NAME in SEMAPHORE ) ; 

Reset a semaphore count to zero. 

WAIT(SEMA_NAME : in SEMAPHORE); 

Wait on a semaphore. Process is blocked. 

FREE_BUFFER(BUFFER : in BUFFER_NUMBER); 

Free a buffer in the "pool." 

GET_BUFFER(FREE_BUFFER_NUMBER : out BUFFER_NUMBER); 

Return an input buffer for READ_BUFFER 
occurs which indicates that a data 
occurred. 

READ_BUFFER(BUFFER out BUFFER_CLASS); 

when an 
arrival 

interrupt 
event has 

Read a buffer from the class of buffers available for 
application programs. 

PUT_BUFFER(BUFFER : in BUFFER_ CLASS); 

Write a buffer from the class of buffers available for 
application programs. 

5.3.6 MPOS States And Transitions. 

The following state and transition diagram shows the 
primative states that the Main Processor transitions through. 
This diagram gives the states that exist at a process level in the 
system software. When an interrupt is received from the DDES, the 
MPOS is in the RUNNING or READY states. While the DMA is 
occurring the MPOS transitions to the BLOCKED state if it is 
currently RUNNING, or if in READY,it maintains its READY state. 
When DMA posting is finished by the DDES, the MPOS is signaled if 
blocked to re-examine its ready-list and dispatch the highest 
priority process to the RUNNING state (Figure 13). 
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INTERRUPT 

INTERRUPT 

Figure 13. MPOS States 6 Transitions. 

5.4 The Support Environment Requirements For Programming ~ 
Driven Nodes. 

The DDPN will need a new type of compiler and linker to 
produce code for the data-driven system. In particular the code 
required must come from compilers that are specifically 
multiprocessor system compilers and linkers. Synthetic execution 
of compiled and linked programs is necessary in order to test the 
data-driven system prior to hosting on the multiprocesaor system. 
In this way a single CPU host can optimize the application by 
"fine tuning" the code development process with a set of 
predetermined execution parameters that can demonstrate how close 
the code design meets the requirements of the system. Such a 
topic is outside the scope of this paper and is mentioned here 
only to include a development perspective to the DDOS description 
given in this paper. 
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6.0 Conclusions i Recommendations 

From our investigation into the concept of data-driven 
architectures and software, the premise of information data 
controling computational processes is found to be feasible. There 
are minor technical problems in software development to overcome 
in using a data-driven architecture due to the current assemblers 

_and high order language compilers available being designed for 
.single CPU systems. Current compilers/assemblers can be used in 
data-driven software development by manual resource resolution 
manipulation. We feel that the anticipated benefits of the system 
far exceed any minor problems in software development that can be 
solved by compiler pragmas for resource allocation. 

Current "form-fit" factors allow the data-driven hardware to 
be inserted into existing systems that have prov1s1on for 
networking of the airframe's computational resources. The choice 
of fiber-optic transmission lines remove the close proximity 
requirements of current networked processors thus allowing for 
increased usage of airframe electronics storage space. 

The utility of a data-driven system is best demonstrated at a 
flight simulator level prior to testing with an airframe's 
networked computational resources. The simulation level has more 
computational algorithms than mission software due to the 
simulator having to create the environment for the aircraft rather 
than fly through it. Thus with more demand on the data-driven 
system, the system's concept bas a practical demonstration of its 
abilities. 
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