
UNCLASSIFIED

A Data-Driven Operating System
for

Data-Driven Architectures of Real-Time Systems

BY

Richard M. Wallace
James E. McDonald

Duane 0. Hague

System Avionics I Electronic Technology Divisions

Air Force Wright Aeronautical Laboratories
Wright-Patterson AFB, Ohio 45433

UNCLASSIFIED

A Data-Driven Operating system
for

Data-Driven Architectures of Real-Tim~~~~

Abstract

In an experiment with the AFWAL/AAA AVSAIL DECsystem 10 and
PDP 11 flight simulation equipment, redundant data bus
transmissions were blocked to demonstrate that a large reduction
in data bus transmissions do not degrade the effectiveness of
real-time programs. The programs became "driven" by their input
data rather than being "driven" by the synchronous, time-based
interrupts. The experiment produced three major results: The
first was that currently optimized real-time software does not
have impaired performance with a hardware-enforced 80 to 90
percent reduction in its data flow. The second was that currently
optimized executive and application software generates
considerablly more data than is optimal for the execution of the
real-time software. The third was that the optimal software
structure using AVSAIL generation hardware and software has
reached its technological limit. The next generation or
rule-based, causality software is emerging from the previous
generation of deterministic, synchronous software in the need for
Data-Driven operating systems and architectures. A description is
given for construction of a Data-Driven Operating System to take
advantage of reduced data bus transmission rates required by the
real-time software in order for the software to be "driven" by the
production of data rather than synchronous, time-based, interrupt
schemes currently in use. A design combination using Data-Driven
computer architecture and a Data-Driven Operating System is
explored providing 80 to 90 percent reduction of data bus loads
with an estimated 50 to 60 percent reduction in central processor
processing loads.

1.0 Scope Of Paper

This paper is written to introduce the networking system
concepts, hardware architecture, and software concepts for
fabrication of a data-driven system network. As the network has
not been prototyped, only the functional attributes of
data-driving are discussed. When specific hardware, processor
timing, and system capacities are mentioned in this paper these
data are extracted from the component manufacturer's data
handbooks.

1

2.0 Introduction

Recent system performance measurements indicate that nearly
90 percent of real-time system avionics computer processing power
is wasted. Future computer architecture designs will probably

,realize an order of magnitude improvement in processing speed by
. using parallel processing schemes, but these architectures still
do not approach the wasted computer power problem now evident in
real-time systems. The data-driven architecture described in this
paper will allow current and future real-time computer systems to
operate nearly an order of magnitude faster with features that
promote revolutionary real-time system concepts.

There are conceptually three layers to the data-driven system
(Figure 1). The outermost layer is the system functionality; how
the complete data-driven system operates to complete a mission.
The middle layer is the dissection of the system into its Local
Area Network (LAN) configuration, while the lowest level of the
system is the data-driven node itself. Further dissection is
possible internal to the data-driven node and will be covered by
this paper.

2

\
\
\

'--._ layer 1 ---- ----
\

LAN\

Function\

-......

'
layer 2

' ' ' ' ' ' ' .1-----?------''7 layer 3

\
\
\

\ \
\ \

\

'·~------~---------

Figure 1. Layers of a Data-Driven System.

3

The data-driven terminology used in this paper implies that
appropriate software is executed on its processor when data inputs
to the software computation change their value by significant
amounts. The term "data-driven" is used to denote the control
method for the exchange and transmission of data on an inter- and

·intra-processor level for control of an entire computer system
through the exchange of new/relevant data between computational
processes. In the context of this paper the term "data flow"
should not be associated with the term "data-driven." Data flow is
the method of partitioning the actual computational algorithms
across two or more physical processors and does not control
passage of data between processes, or contribute to system
control.

3.0 Data-Driven System Network

3.1 Data-Driven System Requirements And Design ~k~tch

After observing current network capabilities and program
operation deficiencies in the real-time arena, the requirements
and design of the data-driven information network for multiple
real-time computer systems were formalized from an optimized blend
of real-time applications of available network components. The
requirements are:

1. Shared memory emulation. To the host computer operation
software, the network must appear as a shared memory unit
which implies that the network is nearly transparent.
This permits autonomous or near-autonomous program
execution. Reads and writes to the shared memories shall
require no more host CPU time than conventional shared
memories (0.5 to 1.0 microsecond). To increase the
throughput of the distributed shared memory, a copy of
the shared memory is to be located at each networked
computer. Shared memory reads would involve only the
computer's locally owned copy of the distributed shared
memory while shared memory writes would update all copies
of the distributed shared memory.

2. Serial linking. To avoid bulky and limited distance
shared memory cables, high speed fiber-optics shall be
used. The shared memory transfer times are accommodated
and the distance between computers can be up to 10
kilometers.

3. Information-only transfer. To increase the efficiency of
the network, the only items transmitted on the network
are data variables that have been updated, or written to
with new values. These new values are termed

4

"information." A data variable can only acquire a new
value as a result of a write action by a CPU, or direct
memory access, to the particular data variable.
Therefore only write actions instigating new data
variable values can instigate a network transmission.
The information-only transfer gives birth to the
data-driven concepts for the entire system architecture.
It should be remembered that in conventional real-time
systems, the majority of write actions to shared data
variables' do not modify the variable value but still
demand a network transmission.

4. Data addresses through vectored interrupts. When a
computer receives information from the network, an
interrupt shall be generated by the rece1v1ng node
hardware directing the rece1v1ng computer to the software
needed to process the information. This technique is
employed to increase efficiency and to m1n1m1ze the
response time of the reacting software program.

With these requirements in mind, the
design of the serially linked, shared
depicted in Figure 2.

initial block diagram
memory ring network is

NJ U • ~etwork
Interface
Unit

Figure 2. Serially Linked, Shared Memory aing Betwork.

5

This block diagram illustrates the major component configurations:

1. Serial Communication Scheme

2. Serial/Parallel Transmission and Reception

3. Distributed Shared Memory

4. Information Detection

5. Data Addressing Through Vectored Interrupts

4.0 Data-Driven Hardware Architecture

At first glance, the data-driven architecture looks very
similar to a standard distributed multi-microprocessor system with
a LAN interconnection scheme. However, there are two primary
innovations in the data-driven hardware architecture. The first
innovation is the hardware and data structure of the data-driven
LAN (DDLAN), and the second innovation is that the hardware
structure of each data-driven processing node is designed to
provide optimum support to the Data-Driven Operating System
software. The details of the data-driven processing node
structure are described in the following sub-sections. The
general form of the data-driven architecture is a ring network
with nominally sixteen nodes. While the network protocol could be
modified for more nodes, it is not likely that more than sixteen
nodes will be used in an avionics application.

4.1 General Form Of The DDLAN.

The data-driven network uses a single line asynchronous
slotted-ring manchester protocol (nominally 25 megabits/second)
with distributed network control. The network is fiber-optic
based where each node has a fiber-optic bypass switch so that
off-line nodes do not interrupt the ring network. The network
protocol is designed to support dynamic network reconfiguration
with a 5 millisecond data stoppage and automatic recovery.

4.2 The Data-Driven Processing Node.

The Data-Driven Processing Node (DDPN) is actually a dual
processor configuration consisting of a Data-Driver Processor
(DDP) and a Main Processor. For the purposes of initialization
the data-driver is a slave processor. However, in normal
operation, the two processors are asynchronous with communication
through FIFO process queues and dual-port data table memory. All
process variables are stored in the data table common memory along

6

with each variable's process control descriptors. While logically
a single common memory, the data table is physically distributed
between different portions of the node.

4.2.1 Data Table Monitor.

Two embedded hardware functions that operate independently of
the system software are the key to the data-driven node. The
first embedded function is the Data Table Monitor (DTM) which is
invisible to the Main Processor. Its function is to trap any Main
Processor write to a global variable's address where the new value
is different from the old value. This results in the new value
and that value's address being loaded into the input FIFO queue of
the Vector Driver, which is the second embedded function.

4.2.2 Vector Driver.

The Vector Driver input queue is always loaded with
address/data pairs received from the DDLAN along with the node's
internal address/data pairs. The Vector Driver uses the address
of the address/data pair, plus an offset, as the address of a
look-up table entry to obtain the vector of the Data Driver
routine that is to handle the associated global data variable.
This new vector/data value is then loaded onto the Data Driver
processor's input FIFO queue. As a vector/data pair come to the
top of the input queue, the pair is dequeued and used in the
routine that jumps to the appropriate Data Driver routine for that
data type. The process continues until the queue is empty at
which time the routine stays in a busy-wait with interrupts
enabled. The handling of the Data Driver and Main Processor FIFO
queues is "ready" status driven with provision made for program
interrupt-on-ready or a "watch-dog" service time-out on "ready"
interrupt.

4.2.3 Data-Driven Local Area Network.

An example of the data-driven architecture is shown in Figure
3. This example could be applicable to a real-time distributed
avionics system or a distributed real-time simulation system.
Individual DDPNs might have local input/output functions to a low
order servomechanism.

7

DO
PN

DO
PN

DO
PN

DO
PN

..__roof DO
PN

~ Fiber Optic Bypass Switch

Host
System

DO

DDPN = Data - Driven Processing Node

DO
PN

DO
PN

DO
.._......,. PN

Figure 3. An Bxample of a Data-Driven Local Area Retwork.

8

4.2.4 DDPN Processing Speed.

The basic requirement of the DDPN is that the DDP must
process the incoming data flow faster than the Main Processor.
The DDP must also be able to handle all data types used in the

'distributed system. While these requirements could be met by a
raw processing speed difference, the DDP routines are designed to
be very short with simple arithmetic functions compared to the
Main Processor's computational routines. Thus where the DDP and
the Main Processor have equal throughput, the difference between
average and worst-case DDP/Main Processor service routines can be
handled by adequate queue lengths with queue-overflow fault
handling routines.

4.3 Specific DDPN Hardware Components.

The data-driven architecture is very compatible with future
high speed processors. A prototype DDPN could be implemented with
any of the latest commercial single-card microprocessors with full
arithmetic capabilities (i.e. fixed and floating point data
types) and with any system bus structure. Hovever the practical
"form-fit" aspects of implementing a double system bus within each
DDPN limit the reasonable choice of a node bus to the VME(A24Dl6)
or DEC Q22BUS type buses. The memory management structure of a
particular microprocessor has a synergistic effect on the
implementation of data-driven software. Based on current
availability, the best CPU for a data-driven prototype would be
the National Semiconductor 16032 Microporcessor (with floating
point data types and memory management) using the VME bus. The
second choice of equipment for prototype fabrication is the DEC
KDJll-A (LSI 11/73) Microprocessor using the Q22BUS.

For the purpose of simplicity, futher discussion of the
data-driven prototype will assume use of the KDJll-A and Q22BUS.
A block diagram of the DDPN is shown in Figure 4. The KDJ11-A is
used as the CPU for both the Main Processor and the DDP. The Main
Processor has significantly more system resources than the DDP to
handle the complex computational algorithms.

9

fiber ,.
Dc~ta-Oriven Bus Optic Data-Onven Bus '(Bypass

Switch

Data J l Data Transait Conten·
.....- ,,,,,,,, ~""""] Or her FIFO tion

Input Buffer Control
Dato t.
Pointer 'T Data Changes t. Pointers

Froa~ Main J Hardware
'] Vector Driver r:

l Output

f
Hesso~ge "' Buffer i'

KOJll·A llAH Driver OOP Onven
DDP 2!>6k.B Vector Process Oatt Input
CPU Table fifO Output Hesuge :weue fifO Buffer
I I I l
Sl.ov~; 0~/ Bus {9 ~lot) J

~ I I

!i "' :> !i

I
E! c E! ~ ; ~ - E! !. ~ :;: u
0.. 0.. "" 0..

0..

D<IU Du<ll DlP !.lave Mun Sl•ve Sl.tve lnterrup
hble Port Proct' •S llud llud C.ontrol Consule ross lin

Ho1ntor RAM f I Hi lhndow WindOW Status [aula to

Twntt> 1 I ~~,
E! E! 0 E! E! :: .. c

1
.. '-' u !. '-' ~ "' "' 0.. 0.. 0.. 0.

~

I Must.:r \l?2 llu·. Ut:! Slut! I

I I r I l l
KOJII·A RAM local local Local Pllll4 Packet

~ DIP 1MB T I at> Off· lr.put Boobtra Me>s<~ge

C.PU Ref ltne Output Dug Inter· 1--
)toraq.- felt'

Option Opt1on

PCIO - Proqr.- Controlled Input/Output
OHA Dlrt'ct ~~ry Access

Figure 4. A Block Diagram of the Data-Driven Processing Bode.

10

4.3.1 DDP And Main Processor Interconnections.

There are three levels of interconnection between the DDP and
the Main Processor. The first level is for initialization and
basic control. A design feature of the KDJll-A is that it

·contains microcode support for a console terminal that can modify
memory and start programs. Using the first interconnection level,
the DDP can act as "system operator" of the Main Processor as well
as providing for eight crosslinked, maskable program interrupts
for each CPU. These interrupts can be set via software in the DDP
CPU.

The second level of interconnection is via "read-windows."
Each of the CPUs can read the memory contents of the other CPU via
a register-mapped window. This allows each of the node's CPUs to
check the status of the flags in the other CPU as well as read
data blocks from the other CPU.

The third level of interconnection is at the data-driven
level. At this level, communications are a function of the Data
Table Common Memory and the FIFO process queues. The software of
each CPU is normally "queue-ready-status" driven, but both process
queues have provisions for program interrupt on either queue-ready
or service-time-out interrupt on the queue-ready.

4.3.2 Data Table Common Memory Requirements.

The size of the data table in each DDPN must be identical or
larger than the total number of defined variables in the entire
DDLAN. If a particular node does not use a variable, then the
pointer that is defined in the Vector Driver look-up table must be
null so that the software can discard that data reference and not
waste time and queue space by loading the vector/data pair onto
the DDP input FIFO queue. For prototype purposes a maximum of
4096 entries in the Vector Driver look-up table (a 12 bit address)
is sufficient; although the hardware can be adapted for another
table limit.

4.4 Time Input To The DDPN.

An important aspect of data-driven operation is that time is
an explicit variable in all operations. This is radically
different from traditional synchronous software where time is
implicit in interrupt processing. Time is handled by the Local
Time Reference Module connected to the Main Processor. For
example, if there are six time intervals of interest to the
computational algorithms where each interval is a multiple of
clock ticks, six data table entries are defined as time variables
where intial values define interval relative phasing and the

11

significance threshold determines the period.
the Local Time Reference Module writes current
time variables by direct memory access.
sigificant time variables being processed by
Main Processor as time becomes relevant

On each clock tick,
time to the six

This results in the
the DDP and then the
to the computational

this occurs without ,algorithms in the Main Processor. All
interrupt to the Main Processor.

4.5 DDLAN Packet Switching Emulation.

A final point on the DDPN, indirectly related to the
data-driven operation, is the Main Processor's additional
interface allowing the DDLAN to emulate a message packet-switching
network for node-to-node block transfers of data as a background
task to the normal data-driven transfers. This function allows
the downloading of the system and application software from an
external mass memory.

4.6 The Data-Driven Local Area Network.

The basic structure of the DDLAN is a unidirectional serial
ring topology where a configuration bypass switch is provided for
each node in the ring. A serial ring topology is ideal for
data-driven operation since all new data transmitted on the DDLAN
must be received by all nodes. Selection of the data to be
processed within that node is accomplished by the internal
data-driver software. Conceptually the DDLAN may be viewed as a
continously circulating series of data slots (Figure 5). Each
node receives slots from its predecessor node and transmits them
to the successor node. In a simple sense, all slots are either
empty or full. When a node receives an empty slot, the node has
the option of filling the slot with an address/data pair before
retransmission of that slot. When the filled slot has circulated
around the ring back to the source node, the slot is converted to
empty and is passed on to a successor node. When a node receives
a full slot from any other node, the address/data packet is copied
to the Data Driver FIFO before slot retransmission. Because of
the transmission of an individual address (pointer) with each data
value, a DDLAN is only about 50 percent efficient for any given
network bandwidth. However, experimental testing on a
synchronous, distributed, multiprocessor system (AFWAL AVSAIL) has
shown that, conservatively, 80 percent of the data flow packet
switching information is redundant (i.e. has no information
value). Thus a DDLAN would only require about 40 percent of the
transmission bandwidth required by the equivalent data flow packet
switching network. For a given network bandwidth, elimination of
transmitting redundant data provides about 250 percent more
informational data transfers than a data flow packet switching
network. This improvement in efficiency easily justifies the

12

increase in hardware complexity required to support data-driven
networks.

I
M ,
' T

Figure 5. DDLAN as a Circulating Serie1 of Data Slots.

13

The DDLAN ring approach has major advantages over alternative
network architectures. The advantages are:

1. Distributed control with optional node by-passing for
fault tolerent operation.

2. Highly efficient use
transmission bandwidth.

of the available network

3. Improvement in the ease of expanding a network's node
count.

4. Automatic equal distribution of the available bandwidth
among all network nodes contending for DDLAN access with
hardware contention resolution.

5. All nodes "see" common data which eases partitioning and
distribution of system and application software. This
allows all real-time evaluation data acquisition
functions to be centralized in a single network node.

6. The DDLAN can perform a hardware emulation of a
node-to-node packet switching network as a background
task to data block transfers.

7. The DDLAN is ideal for fiber optic implementation which
provides a higher bandwidth network while minimizing
physical distance and routing problems of a distributed
network.

4.6.1 The DDLAN Packet Format.

DDLAN is best explained by a discussion of an implementation
prototype. The basic data slot structure is a 36-bit,
manchester-encoded time slot where all slots are separated by a
m1n1mum of two-bit transmission times for a 1.5-bit time time-out
as explained below (Figure 6). Each DDLAN receiving node must
view slot reception as an asynchronous operation. Due to the
small size of information packets, the DDLAN can not afford the
long synchronization preambles used in serial packet switching
networks.

14

:B s t'
R y NODE 12 BIT ADDRESS 16 BIT DATA A
E N I. D. (Pointer) R
A c I
K T

y

0 1 0 2 3 6 7 18 19 34 35

Figure 6. DDLAN Data Slot Structure.

The basic DDLAN slot consists of a 3-bit synchronization
pattern that identifies "start-of-slot" and "type-of-slot",
32-bits of information, and a parity bit. The synchronization
pattern is one of three readily detected invalid manchester
patterns which identify a slot as either an empty slot, a full
slot, or a message slot. For all slots the parity bit is based on
the 32-bit field with all subfields being transmitted most
significant bit first.

The information field for a full slot would be a 4-bit source
node identification, followed by a 12-bit address (pointer),
followed by a 16-bit data word. Execept for the fault condition
described later in the node protocol definition, an empty slot has
the same format as the full slot with the pointer and data as
zero.

The message slot has an information field of a 4-bit source
node identification, followed by a 4-bit target node
identification, followed by a "start-of-message" flag, followed by
an "end-of-message"
flag, followed by 2-bits reserved for future use, followed by
16-bits for a "count-down-byte-of-message" counter, followed by
8-bits of data.

No commercially available network systems are suitable for a
data-driven prototype. A prototype has yet to be built and should
have the highest practical bandwidth available. Commerical
asynchronous manchester decoders currently only support data rates
up to 2.5 megabits/second. A design by Mr. Bague bas been
developed based on newly available components (normally used in
radar) that would allow asynchronous manchester decoding with 80

15

percent confidence of acheiving 25 megabits/second and 99 percent
confidence in acheiving 15 to 20 megabits/second transmission.
The design is based on use of nanosecond programmable delay lines
and two-level enabled edge synchronized 50 megahertz (25 megabit
data) Schottky Square Wave Generator Modules (part number:

.MDSWGM-TTL-50 from Engineered Components Company). These
_components are being obtained to verify this design. The design
operates by using the manchester waveform to reconstruct the
manchester phase-clock waveform synchonized to the manchester
waveform to ~ 5 percent instantaneous accuracy at 25 megabits.
Lower data rates of course give better accuracy. This same design
also provides recognition of manchester activity time-out in 1.5
bit transmission time which is the reason for the 2-bit minimum
gap between slots. This gap also prevents decoding errors from
propagating into succeeding slots. The reconstructed phase-clock
allows the manchester waveform to be converted into a sequence of
edge transitions for "data-one", "data-zero", "phase-one",
"phase-zero" and/or a missing transition (either of:
data/phase/one/zero).

This technique allows for detection of the synchronization
waveform types, reconstuction of the information, and simultaneous
checking for correct manchester format. Besides format testing,
the slot information field is also tested for parity and for
having the correct data bit count before the slot gap is detected.
Prior use of this technique indicates that it provides hardware
detection of all transmission errors to a confidence level of at
least 99.99999 percent (the "7-nines Confidence Level").

4.6.2 Implementation Of The Fiber-Optic Node Bypass Switch.

The choices in the fiber-optic field are still somewhat
limited due to the low number of manufacturers, however Frequency
Control Product, Incorporated produces an ideal optical bypass
switch in their Model SW-T2; which comes in two versions.

Model SW-T2 is electrically activated with spring-return­
-to-bypass. This version allows node attachment control by the
node with automatic power-off line bypass. Model SW-T2F is a
bistable latching version where state switching is accomplished by
steered current pulses. This version allows the on-line/off-line
condition of one node to be controlled by other nodes. For
prototype purposes the selection is for the SW-T2 model. It
should be noted that the SW-T2 switches states in 5 milliseconds
and that no optical information will pass during the switching
transient. This characteristic as well as "optical-switch-bounce"
can be handled automatically by the DDLAN protocol.

16

4.7 DDLAN Protocol.

The DDLAN protocol is identical in all nodes. There are two
parameters effecting node operation that are programmable within
each node. These parameters are "slot-wait-count-for-echo" and
"error-retry-counter." While it is feasible to have hardware
detection of network activity within each node, it is recommended
that polling be done for all possible nodes through data-driven
system software or through the DDLAN packet switching mode. The
following are the DDLAN protocol rules in descending order of
importance. Each slot contains the node identification of the
last node that-created/used that DDLAN slot.

o If no input is detected for 32 slot times, transmit empty
slots with an all ones address (pointer) until input is
received. Proceed to the next protocol.

o If no input is detected for one slot time, transmit one
empty slot.

0 If an empty
received,
retransmit
slot (i.e.

slot with all ones address (pointer) is
abort data transmissions in progress,

received empty slot, and wait for normal empty
all zeros).

o If a normal empty slot is received and the transmission
queue is more that half full, destroy the empty slot.

o If a slot is received with error, destroy the slot. Note
that failure to recongize the slot synchronization
waveform will have the same effect as this protocol.

o If more than 32 slots are received while waiting for echo
of a node's last transmitted full slot or message slot,
decrement the retry counter. If the counter underflows,
notify the Data Driver processor of a network fault, else
restore the information field for a transmission retry.

0 If a full/message slot is received that
"stored-last-node" transmission, destroy
transmit an empty slot.

matches the
that slot and

o If a full slot is received with a different node
identification, copy the information field to the Vector
Driver and retransmit the full slot.

o If a message slot is received with a matching target node
identification, copy the information field to the Main
Processor message interface and retransmit the message
slot.

17

o If an empty slot is received while the node is waiting
for a full slot or message slot echoing from a prior
transmission, the empty slot is retransmitted.

o If an empty slot is received when a data-driven
address/data output is ready or a message field is ready,
destroy the empty slot and transmit the appropriate full
slot or message slot. Then inhibit further use of empty
slots until the echo matches or time-out occurs. The
data-driven output has priority over the message output.

5.0 Software Concepts

5.1 The Logical Structure Of The Data Driven Node.

In Figure 7 the logical structure of the DDPN shows that the
correspondence between the physical components comprising the node
have almost a literal mapping to the software control entities
compr1s1ng the Data Driven Operating System (DDOS). The Vector
Processor (Vector Processor Operating System -- VPOS), the Main
Processor (Main Processor Operating System -- MPOS), and Data
Driver (Data Driver Executive System -- DDES), are control
entities that contain system software operating at increasing
levels of complexity.

Logically the Vector Processor consists of an input FIFO
queue, a vector table and VPOS primatives which reside in RAM, and
an output FIFO. These components are manipulated by the DDPN's
most rudimentary system software; the VPOS. Its limited
functions provide intelligent facilities for one-to-one mapping of
global data addresses to Data Driver primatives.

The Main Processor's logical composition is defined as an
input FIFO from the Node Bus, a data table read/write window for
the two port data table RAM, and the local memory RAM containing
the computational processes and the MPOS primatives. The Main
Processor has the next level of complexity in operating systems
(indeed a quantum level increase) by its primatives being able to
control a multiprogrammed environment.

18

'Ill A Dc~ta-Driven)yslem Bu~ Data Packet Dc~tc1 & Pointer f.{
00
f;i
It

,If Ocltd Pc~cket Input Sourc., Flag '
Vector Ot~t.t I IIIII!!
Orlver - VH tor

• ! v if
t:1 • •
~ ...

L ..
Dr her Data Driver "" c

0 Vector r IFO Queue
Q. Table Data Driver

~ - ~
<
It

"
lnrtut C.tlls I l Output Ca II s

t:
... ~ ""' Ret rn~ Returns ., ...

0
n
It • • ,....
" 00

Ill
0
Q.
It

b

..
I I ~ '" L ~ 0

~ ..
"' Input Output " ~ () Routine f---41 ~ Routine H L
0. Data Table I :J I c

Global e-n 0
u 0

"' c
I +' . lf:

~ • u ot-_,: I

~ :lit
['- • ,_, .. . , __ ,

IE , > 0 .. • ..
L ... • .

c . I .._ ;:: ... Input ... Output :c •r ..,
~

Routine r--oo' ~ Routine __, ... u n "' N N "' ... "' 00
n •

..
L

.___
c
0 Dat.t l.tble Mrt>ss
a.

en
l"t ...

'-' Write Rt>.td H<1 1 n llri vo•r

Wtndnw Window
f II 0 Queue

r::
n
f;i
It
•

' .. n ~
.., J,, Kt' urns
"' ... 14ain DrlvE'r u
u

""'" •t

"' l!ount itw

" I
\0

.,
I . I

~~- - ·- . I
•n I

'' J l•lttlft

Rout'""
II

The logical composition of the Data Driver is similar to the
Main Processor. The Data Driver has an input FIFO from the Vector
Processor, a data table read/write window for the two port data
table RAM, a FIFO buffer to the System Bus, and a local RAM which
contains the logical control primatives for the Main Processor and

'the DDES primatives. The most important control software of the
-DDPN is the DDES. This system software is simple in its
organization to allow high throughput. The system is based on a
prioritized, batch-queue model in which the greatest amount of
throughput is the design goal. It is in this executive that the
software compliments the hardware. By placing all logical program
decisions for the particular node's mission software into a
separate processor, the computational processes executing in the
Main Processor can continue without interrupt. This is the
premise upon which the DDPN system software is built.

The necessity of interprocessor communication, and the
facility to conduct autonomous processing per DDPN, is provided by
the Node bus. Bus usage follows DEC Q22BUS protocol. It is
important to note here that there is a "short-circuit" in the
usage of the Node Bus. The Data Table Monitor allows the Vector
Processor to receive DMA interrupts from the Main Processor
without any usage of the Node Bus. This is a simple and effective
means of keeping the logical control of the DDPN at real time
speeds. System software for this design feature is provided in
the Vector Processor. This software allows "tagging" of the data
as being internally or externally generated.

5.2 The Data Driven Concept Of Information Management.

In the data-driven system there are two kinds of data. The
first is called Information because it types the data as having
relevant importance to a computational process. The second is
called Redundant because it types the data as being of no value to
a computational process. The importance of information to a
computational process is expressed as time, summation, or delta
critical. Time critical information is data which must reach the
computational process at fixed delta times. Summation critical
information is data that is summed to form a value that triggers
an event. Delta critical information is data that must be
significantly different from its previous value in order to
trigger an event.

In the data-driven system a computational process' cycle of
execution is based on its sensitivity to the generation of
information data. To control the redundant data from causing
needless cycling of the computational processes, a method bas been
developed that filters data both external and internal to the
DDPN.

20

5.2.1 Transmission Of Information Data i Blockage Of Redundant
Data.

There are two stages in filtering data for information data
control. The Vector Processor filters data in a pre-comparison

,state where the data is not checked for information value and the
-Data Driver filters data in a post-comparison state where the
information content of the data is known.

The primatives of the Vector Processor operate on a data
packet coming from the System Bus or Main Processor filtering it
before it is placed onto the Data Driver's input FIFO. To
determine if the recipient node has need of the data in the data
packet, the primatives use the address (pointer) in the data
packet plus a fixed offset as the address of a vector table entry.
If the entry is non-null (i.e. not all zeros) the vector table's
entry -- a 32-bit address of the Data Driver data comparison
primative, the data packet 12-bit address (pointer)/ 16-bit data
pair, and 4-bit packet indicator -- are loaded onto the 32-bit
wide FIFO buffer as two long words (Figure 8). This process is
the same for a Main Processor DMA detection except that the 12-bit
address field is set to all zeros and the packet indicator is
different.

The Data Driver's data comparison primatives are dispatched
by a tight-loop entry primative that uses the vector table data
(the 32-bit address of the Data Driver data comparison primative)
to jump to the appropriate comparison primative. The primative is
specific for that particular data's machine representation data
type and output destination. The data table record entry is
updated (as prescribed by the data table record's entry indicator
bits). If the data is informational data, the comparitor
primative signals that the new data is to be placed on either the
Main Processor input FIFO queue or the DDPN output FIFO queue for
transmission to all nodes on the DDLAN (based on the data
comparitor primative called). Control is then returned to the
DDPN's entry point tight-loop primative. If the data is redundant
data, the data table record entry is updated (as prescribed by the
data table record's entry indicator bits) and control is returned
to the tight-loop primative.

21

.- ---------------~--

,.. -------
1
I
I J.- __ .., __ _

32 bit

32 bit

_________ ..,_

32 bit

32 bit address of data comparator

--,
t
I
f

-·-t
I
I
I

-- ~
' I
• ..

4 bit
Indicator

12 bit
Pointer

16 bit data

MSB LSB

High Order Word

Additional Data
Capacity of
FIFO Packet
Structure

Low Order Word

Figure 8. Data-Driver Input FIFO Structure.

A reduction in the number of primatives needed by the Data
Driver is accomplished by using the 12-bit address (pointer) of
the global data's data comparison primative as a qualifier for
selection of the current data table entry. Selection of the
appropriate entry is done through a subtable of data table entries
based on the 12-bit pointer internal to the routine. Therefore
the amount of primatives needed by the Data Driver for comparing
data for the Main Processor's
computational processes will be based on the total amount of
different machine data types in use by the application software's
global variables in the Data Driven System.

22

5.2.2 Separation Of Process Logic And Computational Logic.

The difference between process logic and computational logic
in conventional programming is bounded by a thin fluid definition.
The following definition is used for distinguishing between these

·two logics in data-driven software.

Process logic is programming logic which
determines the execution of single function
code modules. A single function code module
has no external calls and branches only within
its own local block.

Example:

begin PROCESS_LOGIC

case CALLING_FUNCTIONS is

when TEST=> TESTING(TESTING_DATA);

when MISSION => MISSION_START;

when others => raise MISSION_ABORT;

end case;

end PROCESS_LOGIC;

Computational logic is the programming logic
that determines the method of data computation
based on no other information other than the
value of the data being computed.
Computational logic can cause branches within
single function code blocks.

Example:

begin COMPUTATIONAL_LOGIC

for KOUNTER in 1 to 20 loop

X :• X+ 1;
Y :• SQRT(X);

end loop;

end COMPUTATIONAL_LOGIC;

23

A Data Driver's data comparison primatives control the
process logic of the Main Processor by only scheduling a process

.for execution when that process has information data. Control is
.exercised through updating the data table record entries through
accepting data from the Data Driver input FIFO. The Main
Processor never initiates a process on its own, but it has the
primative operations to reschedule processes that it currently
has. The Main Processor's function is to execute computational
processes given it by the DDES without concern by the application
code as to whether the process should be scheduled at that time or
not (decision logic removal).

An analogy to this type of process control would be the
nerve-terminal, ganglia, and cerebellum relationship in
vertebrates. If the nerve-terminal receives a stimulus and the
ganglion relates the stimulus to a condition know as "pain" to the
vertibrate, then the
reaction of the muscles to contract is not controlled by a
cerebral action but an a'priori ~action of the ganglion. The
relation in the DDPN would have the nerve-terminal as the Vector
Driver, the ganglion as the Data Driver and the cerebellum as the
Main Processor.

5.2.3 Data Table Use And Format.

Data-driven control of the Main Processor is accomplished
through the use of the data table. As previously described, the
two 32-bit long words are queued by the Vector Processor onto the
Data Driver's input FIFO and are dequeued by the entry point
tight-loop primative. From the 4-bit indicator the data is
determined to be either internally or externally generated data.
If the data is internally generated then the value of the data is
not passed on the FIFO queue, but its address is passed through to
the Data Driver When the data is external, as specified by the
4-bit indicator in the low order word placed on the FIFO queue,
then the 16-bit portion(s) of the data is passed on the FIFO queue
(Figure 9).

24

0 0 1 1 1 word internal data

from
0 1 0 1 2 word internal data

local
1 0 0 1 3 word internal data

DDPN
1 1 0 1 4 word interna 1 data

0 0 1 0 1 word externa 1 data

external
0 1 0 0 2 word externa 1 data

to
1 0 0 0 3 word external data

DDPN
1 1 0 0 4 word externa 1 data

figure 9. Decode Logic for DDP Input PIPO 4-Bit Indicator.

25

5.2.3.1 Format Of The Data Table.

The order of the data table in which the system global data
entries occur is very sensitive due to the use of the relational

_position of a particular datum being an explicit offset to another
particular datum. Even though the data table bas variable machine
representation data and variable length records, the relational
position of the fixed length data is used to '~alk" the table as
described below. The data table entry format is in the order
given. The 12-bit address (pointer) used by the Vector Processor
is passed to the data comparison primative to differentiate
between data table entries for data of the same machine
representation.

1. Call Address-- The
computational algorithm
(32-bit).

address of the beginning of the
for the data in the Main Processor

2. Table Address -- The address of the data table data
value. This points to the New Value entry (32-bit).

3. True/False --The indicator that the data bas become
significant (1-bit).

4. Summation/Delta -- Indicates if the input data is summed
to form the significant value and make True/False go True or
whether the absolute difference of the Old Value and New
Delta are to cause True/False to go True (1-bit).

5. Less than Bottom -- Lower window value trigger bit.

6. Less than Top -- Upper window value trigger bit.

7. Equal to Bottom -- Lower window value trigger bit.

8. Equal to Top Upper window value trigger bit.

9. Bottom Value The absolute value of the window's lower
value.

10. Top Value -- The absolute value of the window's upper
value.

11. Summation-- Contains the summed values of incremental
data values. This entry is zeroed when the process is
scheduled for execution by the DDES primatives (8 to 64-bit).

12. Delta from old value -- This entry tells the signed
difference between the last data value compared and the new

26

value. This entry is set to zero when the process is
scheduled for execution (8 to 64-bit).

13. Old Value The value prior to update (8 to 64-bits).

14. New Value The value after update. This is the
location of the data for the Main Processor when it has
become significant (8 to 64-bit).

15. Paired Values
are paired values
length to allow the
all data in the
process.

-- The Boolean List and Data Link Address
in the data table. The values are fixed

DDES system primative TREE_WALK to access
data table that is needed to schedule a

1. Boolean List -- tells what boolean operation is to
be performed on the True/False bit on the following
link address (3-bit). The list tells what operation
as well as necessary data connectivity is needed
when a computational process needs several data
items becoming relevant at once.

2.

1. "0 0 0" AND

2. "O 0 1" OR

3. "0 1 0" XOR

4. "0 1 1" NOT

5. "1 1 1" END OF LINK (this is the
indicator of the last address to be compared in
a data link list.)

Data Link Address -- The address of
table entry containing a value used
the information data for the process
the process to run (32-bit).

another data
to determine if
is ready for

27

5.2.3.2 Information Data Control ~The Process Lists.

Control of the process through information data has been used
in the above sections as an axiom. The key for controlling
process creation is the method by which the data table is used.

cThe number of data comparitor primatives is less than the total
number of unique data table entries. Therefore the comparitor
primative must first ascertain what to do with the data. In the
following discussion the concept of data being relevant can be
tuned by judicious choice of the "window"
boundries Top and Bottom. These values keep the redundant data at
the "background noise" level causing the DDPN to be less sensitive
to the generation of data.

When the input data enters the comparison primative the
primative accesses the data table to find the True/False flag to
see if any previous access has made the data relevant. If
True/False is true the data linked list is ''walked" for that entry
(an explanation of ''walking" follows in the next paragraph). If
True/False is false the Summation/Delta flag is checked to
determine the computation on the incoming data. Knowing this, the
four boolean trigger bits (Less than Bottom to Equal to Top
inclusive) are checked to determine the boolean tests to be made
on the computation (Figure 10) in relation to the Top Value and
Bottom Value.

28

.LT. B • LT. T .EQ • B .EQ. T DATA IS RELEVANT WHEN IT IS:

1 0 0 0 .LT. BOTTOM VALUE

0 1 0 0 .LT. TOP VALUE

0 0 1 0 .EQ. BOTTOM VALUE

0 0 0 1 .EQ. TOP VALUE

1 0 1 0 .lE. BOTTOM VALUE

0 1 0 1 .lE. TOP VALUE

0 1 1 0 .GT. BOTTOM VALUE

1 0 0 1 .GT. TOP VALUE

1 1 1 0 .GE. BOTTOM VALUE

0 1 1 1 .GE. TOP VALUE

Fiaure 10. Decode Loaie for the Data Table Boolean Triaaer Bits.

29

If the Summation/Delta flag is true then the data is added to the
Summation field value and the boolean operation is done. If the
Summation/Delta flag is false the data is added to the Old Value
to get the New Value and the boolean test is now done using New
Value with the Top and Bottom values in the table. Note that Top

,and Bottom can be either absolute values or delta values while
_keeping the parameterization for the data comparison primatives
generic. For subtraction, the data is negative. Correct sign is
a responsibility of the application program generating the data.
If the test is false then Summation or Delta is modified and
True/False is set to False. If the test is true then True/False
is set to true and the Boolean List from the Data Linked List is
now ''walked".

"Walking" the Data Linked List is the responsibility of the
DDES primative TREE_WALK which uses the Boolean List (BOOL) and
the Data Link Address (DLA) to use fixed offset addressing to
access other data table entries that effect the scheduling of a
process. A prioritization of DLAs is attained by ordering the
BOOL/DLA pairs in the priority order in which the causality data
for a process scheduling event must be checked and scheduled.
Using the first DLA, in the BOOL/DLA list, vector to the data
table entry and operate on the True/False flag with the BOOL
value. This process continues until a True value is attained by
operation of all the vectored to True/False and BOOL values. If
true is the result, and knowing the priority of the BOOL/DLA
pairs, DATA_ COMPARE, through TREE_WALK passes all the Call
Addresses in the data table entries that are referenced by the
BOOL/DLA pairs to the CREATE_PROCESS primative for dispatch to the
Main Processor. If the result of the TREE_WALK is false, then the
True/False flags in all the data table entries retain their state
and the next incoming data is processed.

The above discussion of the Data Link List describes only
half of the power of the data table. The other half is the
table's ability to control the transmission of data onto the
System Bus. If the primative called was for transmission of the
data from the node, then then data comparison primative would go
through the same steps described above with a final call by
DATA_COMPARE, if indeed there was a BOOL/DLA pair (the Boolean
List may have had "111" as the first entry), to GET_BUFFER and
WR.ITE_BUFFER primatives. If the Boolean List did have "111" as
the first entry then the data comparison primative would have
called GET_BUFFER and WRITE_BUFFER.

30

5.3 Control Systems Of~ Data Driven Node.

In the previous portions of this paper, control of the data
table has been explicitly and implicitly accomplished solely
through system primatives that are independent of the application

,software running in the Main Processor. In the next three
·sections the specific primatives that make-up the system software
for each processor in the DDPN are assembled. The functional
descriptions are given to indicate the relationships that exist
between the primatives.

5.3.1 Vector Processor Operating System Primatives.

The choice of primatives for the VPOS is limited to the most
basic functions for processing data through the vector table. The
primatives listed are used in the above discussion in the manner
described in the text following each primative.

GET_BUFFER(FREE_BUFFER_NUMBER : out BUFFER_NUMBER);

Return an input buffer for READ_BUFFER when an interrupt
occurs which indicates that a data arrival event has occured.

READ_BUFFER(BUFFER : out BITS_36; BUFFER_TYPE : out BITS_2);

Return the buffer contents
indicator. The POINTER and
extracted from BUFFER.

and the
COMPDATA

internal/external
contents are then

TABLE_OFFSET(POINTER
DRIVE_PRIMATIVE_ADDR

in BITS_12;
out BITS_32);

Uses the 12-bit pointer plus offset to return the data
comparison primative address

PUT_BUFFER(INDICATOR
POINTER
COMPDATA
DRIVE_PRIMATIVE~DR

STATUS

in BITS_4;
in BITS_12;
in BITS_16;
in BITS_32;
out BITS_2);

Put data onto the Data Driver's FIFO queue. The status
returned is an indication of how full the FIFO is becoming.

SYSTEM_EXCEPTION(EXCEPTION : in EXCEPTION_TYPE);

There are three exceptions defined for
BAD_ADDRESS, OUT_BUFFER_FULL, IN_BUFFER_ERROR

the VPOS;

31

RETRANSMIT--UFFER(NODE_ID : in NODE_TYPE);

Sends message out onto the System Bus for retransmission of a
data packet.

5.3.2 VPOS States And Transitions.

The following state and transition diagram shows the
primative states that the Vector Processor transitions through.
This diagram gives the states that exist at a process level in the
system software. As data comes into the Vector Processor the VPOS
is taken from the NULL state to the INTERRUPT state in which the
data packet is collected. Next the VPOS enters the RUNNING state
until the data packet, table look-up, and FIFO operations are
complete. If there is no pending interrupt, the VPOS goes back to
the NULL state. If there is a pending interrupt the VPOS
immediately transitions through the NULL state to the INTERRUPT
state (Figure 11).

Piaure 11. VPOS States & Traneitions.

32

5.3.3 Data Driver Executive System Primatives.

These primatives provide the essential methods for
controlling the processes in the Data Driver. These primatives
are used in controlling the data table for scheduling processes in
the Main Processor. The primatives listed are used in the above

·description in the manner described in the text following each
primative.

READ_FLAGS(FLAGS : out FLAG_WORD);

To read the other CPU's status flags.

SET_INTERRUPT(MASK
LEVEL
STATUS

in MASK_WORD;
in INTERRUPT_LEVEL;
out BITS_ 4);

To set the eight maskable crosslinked interrupts.

CREATE_PROCESS(PCB_DATA : in PCB_RECORD);

When TREE_WALK results in a True value,
called to create a process control
Processor.

this
block

primative is
for the Main

DATA_COMPARE(INDICATOR
POINTER
COMPDATA
DRIVE_PRIMATIVE_ADDR

in BITS_4;
in BITS_12;
in BITS 16;
in BITS=32);

This primative vectors to the appropriate data comparison
algorithm which uses POINTER to distinguish which data type
specific routine is called. This primative contains its own
SCRED_PROCS.

GET_PID(PID :out INTEGER);

Return the process ID for a process in the process table.

GET_SCHED(PID : in INTEGER; PRIORITY : out INTEGER);

Return the scheduling priority of a process in the process
table.

ABORT(PROCESSOR in PROCESSOR_ID; PID : in INTEGER);

Stop a process in the Data Driver or Main Processor. This is
used when aborting a process is desired over normal process
termination.

33

SYSTEM_EXCEPTION(EXCEPTION : in EXCEPTION_TYPE);

The exceptions are PROCESS_ABORT, SYSTEM_ABORT, NODE~BORT.

PORT_COUNT(PORT_ID : in INTEGER; QUEUE : out INTEGER);

Return the wait count for a resource at a port.

PORT_RECEIVE(PORT_ID : in INTEGER; QUEUE_TOP : out INTEGER);

Take the first message waiting at the port.
QUEUE_TOP.

Decrements

PORT_RESET(PORT_ID : in INTEGER);

Reset the port, signal all waiting procedures. This causes a
cascade of procedures internal to the DDES. This is used to
break-out of an INCREMENTAL_READY state.

PORT_SEND(PORT_ID, PORT_MESSAGE : in INTEGER);

Send a message to a port. Increments QUEUE.

PORT_CLEAR(PORT_ID : in INTEGER);

Like PORT_RESET, but does not signal the waiting processes.
This is used with PORT_RECEIVE to get a priority message.

SCHED_PROCS(PID, PRIORITY : in INTEGER);

Schedule a process in the process table with a priority. The
pocess control block is DMA written to the Main Processor's
process queue.

SCHED_LIST_PROCS(PID
PRIORITY

in PID_LIST;
in PRIORITY_LIST);

Schedule a list of processes in the
priorities. The process control
the Main Processor's process queue.
with TREE_WALK when there is a
scheduled.

TREE_WALK(RESULT : out BITS_l);

process table with their
blocks are DMA written to

This primative is used
list of processes to be

Uses BOOL_DLA to walk the Data Link list maintained in the
data table.

34

BOOL_DLA(out BOOLEAN_LIST : BITS_3;
out DRIVE_PRIMATIVE_foDDR : BITS_32);

Return the Data Link information in the data table.

RESUME_PROC{PID in INTEGER);

Resume a DDES suspended process.

PROC_SUSPEND(PID : in INTEGER);

Suspend a DDES process.

SEMA_COUNT(SEMA_NAME
COUNT

in SEMAPHORE;
: out INTEGER);

Return the count associated with a semaphore.

SEMA_CREATE(SEMA_NAME : in SEMAPHORE);

Create a semaphore.

SEMA_DELETE(SEMA_NAME in SEMAPHORE) ;

Delete a semaphore.

SIGNAL(SEMA_NAME : in SEMAPHORE);

Signal a semaphore to unblock a process.

PROC_SLEEP(PID, DELTA_TIME : in INTEGER);

Put a process to sleep for so many "ticks" of the processor
clock.

SEMA_RESET (SEMA_NAME in SEMAPHORE) ;

Reset a semaphore count to zero.

WAIT(SEMA_NAME : in SEMAPHORE);

Wait on a semaphore. Process is blocked.

FREE_BUFFER{BUFFER_NUMBER : in BUFFER_NUMBER);

Free a buffer in the "pool."

GET_BUFFER{FREE_BUFFER_NUMBER : out BUFFER_NUMBER);

Return an input buffer for READ_BUFFER when an interrupt

35

occurs which indicates that a data arrival event has occured.

READ_BUFFER(INDICATOR
POINTER
COMPDATA
DRIVE_PRIMATIVE_ADDR

out BITS_4;
out BITS_l2;
out BITS 16;
out BITS:32);

Reads in the FIFO data for DATA_COMPARE.

PUT_BUFFER(BUFFER
BUFFER_ TYPE
STATUS

in BITS_36;
in BITS_2;
out INTEGER);

Writes the buffer contents using the System Bus or Main
Processor based on the BUFFER_TYPE. The POINTER and COMPDATA
contents are included in BUFFER.

5.3.4 DDES States And Transitions.

The following state and transition diagram shows the
primative states that the Data Driver transitions through. This
diagram gives the states that exist at a process level in the
system software. As data comes into the Data Driver, the DDES is
in the BLOCKED state. A reschedule transition occurs to the READY
state where DATA_COMPARE is dispatched to RUNNING. As the data
table is accessed the DDES process goes through BLOCKED,
INCREMENTAL-'EADY, and READY states. After the data table has
been updated, processes scheduled for the Main Processor or System
Bus transmission completed, the DDES transitions through interrupt
to the BLOCKED state, waiting for a resume transition which is
signaled by input to the DDES input FIFO (Figure 12).

36

INTERRUPT

RESUME

TIMED T

TIME OUT

Figure 12. DDES States & Transitions.

5.3.5 Main Processor Operating System Primatives.

These primatives provide the essential methods for
controlling the processes in the Main Processor. As control of
process selection comes from the DDES, the MPOS is only concerned
in maintaining the current process. Interrupts only occur in the
Main Processor when the process list is updated. The primatives
listed are used in the above discussion in the manner described in
the text following each primative.

DEVICE_OPER(DEVICE : in DEVICE TYPE;
DEVICE_BUMBER : in INTEGER);

Open a channel to a physical device.

37

DEVICE_CLOSE(DEVICE_NUMBER : in INTEGER);

Close a channel to a physical device.

DEVICE_CONTROL(DEVICE in DEVICE_TYPE;
COMMAND : in DEVICE COMMAND;
STATUS : out DEVIcE_TYPE_STATUS);

Generic control of a device.

GET_PID(PID : out INTEGER);

Return the process ID for a process in the process table.

GET_SCHED(PID : in INTEGER; PRIORITY : out INTEGER);

Return the scheduling priority of a process in the process
table.

ABORT(PID in INTEGER);

Stop a process in the Main
aborting a process is
termination.

Processor.
desired

This is used when
over normal process

SYSTEM_EXCEPTION(EXCEPTION in EXCEPTION_TYPE);

The exceptions are PROCESS~BORT, SYSTEM_ABORT, NODE~BORT.

PORT_CREATE(PORT_ID : in INTEGER);

Allows MPOS to provide process communication ports for the
processes' application code.

PORT_DELETE(PORT_ID : in INTEGER);

Allows MPOS to get rid of unneeded ports.

PORT_COUNT(PORT_ID : in INTEGER; QUEUE : out INTEGER);

Return the wait count for a resource at a port.

PORT_RECEIVE(PORT_ID : in INTEGER; QUEUE_TOP : out INTEGER);

Take the first message waiting at the port.
QUEUE_TOP.

PORT_RESET(PORT_ID in INTEGER);

Decrements

38

Reset the port, signal all waiting procedures.
cascade of procedures internal to the MPOS.
break-out of a BLOCKED MPOS state.

PORT_SEND(PORT_ID, PORT_MESSAGE : in INTEGER);

Send a message to a port. Increments QUEUE.

PORT_CLEAR(PORT_ID : in INTEGER);

This causes a
This used to

Like PORT_RESET, but does not signal the waiting processes.
This is used to get a priority message.

RESCHED_PROCS(PID, PRIORITY : in INTEGER);

Reschedule a process in the process table with a priority.
The process control block is modifiable after a process list
update interrupt occurs from the DDES.

RESCHED_LIST_PROCS(PID
PRIORITY

in PID_LIST;
in PRIORITY~IST);

Reschedule a list of processes in the process table with
their priorities.

RESUME_PROC(PID : in INTEGER);

Resume a MPOS suspended process.

PROC_SUSPEND(PID : in INTEGER);

Suspend a MPOS process.

SEMA_COUNT(SEMA_NAME
COUNT

in SEMAPHORE;
out INTEGER);

Return the count associated with a semaphore.

SEMA_CREATE(SEMA_NAME : in SEMAPHORE);

Create a semaphore.

SEMA_DELETE(SEMA_NAME in SEMAPHORE);

Delete a semaphore.

SIGNAL(SEMA_NAME : in SEMAPHORE);

Signal a semaphore to unblock a process.

39

PROC_SLEEP(PID, DELTA_TIME in INTEGER);

Put a process to sleep for so many "ticks" of the processor
clock.

SEMA_RESET(SEMA_NAME in SEMAPHORE) ;

Reset a semaphore count to zero.

WAIT(SEMA_NAME : in SEMAPHORE);

Wait on a semaphore. Process is blocked.

FREE_BUFFER(BUFFER : in BUFFER_NUMBER);

Free a buffer in the "pool."

GET_BUFFER(FREE_BUFFER_NUMBER : out BUFFER_NUMBER);

Return an input buffer for READ_BUFFER
occurs which indicates that a data
occurred.

READ_BUFFER(BUFFER out BUFFER_CLASS);

when an
arrival

interrupt
event has

Read a buffer from the class of buffers available for
application programs.

PUT_BUFFER(BUFFER : in BUFFER_ CLASS);

Write a buffer from the class of buffers available for
application programs.

5.3.6 MPOS States And Transitions.

The following state and transition diagram shows the
primative states that the Main Processor transitions through.
This diagram gives the states that exist at a process level in the
system software. When an interrupt is received from the DDES, the
MPOS is in the RUNNING or READY states. While the DMA is
occurring the MPOS transitions to the BLOCKED state if it is
currently RUNNING, or if in READY,it maintains its READY state.
When DMA posting is finished by the DDES, the MPOS is signaled if
blocked to re-examine its ready-list and dispatch the highest
priority process to the RUNNING state (Figure 13).

40

INTERRUPT

INTERRUPT

Figure 13. MPOS States 6 Transitions.

5.4 The Support Environment Requirements For Programming ~
Driven Nodes.

The DDPN will need a new type of compiler and linker to
produce code for the data-driven system. In particular the code
required must come from compilers that are specifically
multiprocessor system compilers and linkers. Synthetic execution
of compiled and linked programs is necessary in order to test the
data-driven system prior to hosting on the multiprocesaor system.
In this way a single CPU host can optimize the application by
"fine tuning" the code development process with a set of
predetermined execution parameters that can demonstrate how close
the code design meets the requirements of the system. Such a
topic is outside the scope of this paper and is mentioned here
only to include a development perspective to the DDOS description
given in this paper.

41

6.0 Conclusions i Recommendations

From our investigation into the concept of data-driven
architectures and software, the premise of information data
controling computational processes is found to be feasible. There
are minor technical problems in software development to overcome
in using a data-driven architecture due to the current assemblers

_and high order language compilers available being designed for
.single CPU systems. Current compilers/assemblers can be used in
data-driven software development by manual resource resolution
manipulation. We feel that the anticipated benefits of the system
far exceed any minor problems in software development that can be
solved by compiler pragmas for resource allocation.

Current "form-fit" factors allow the data-driven hardware to
be inserted into existing systems that have prov1s1on for
networking of the airframe's computational resources. The choice
of fiber-optic transmission lines remove the close proximity
requirements of current networked processors thus allowing for
increased usage of airframe electronics storage space.

The utility of a data-driven system is best demonstrated at a
flight simulator level prior to testing with an airframe's
networked computational resources. The simulation level has more
computational algorithms than mission software due to the
simulator having to create the environment for the aircraft rather
than fly through it. Thus with more demand on the data-driven
system, the system's concept bas a practical demonstration of its
abilities.

42

Biblography

1. Alexandridis, N.A., Microprocessor System Design CQncepts,
Computer Science Press, Rockville, Maryland, 1984.

, 2. Comer, D., Operating System Design: The XINU Approach,
Prentice-Hall 1984.

3. Glass, R.L., et al., Real-Time Software, Prentice-Hall 1983.

4. Lillevek, S.L., and Easterday, J.L., "A multiprocessor with
replicated shared memory," Proceedings of the National
Computer Conference, Seattle, WA, 1983.

5. McDonald, J.E., "An Architecture for Event-Driven Real-Time
Distributed Computer Systems," Department of Computer Science,
Wright State University, 1983.

6. Soh, S.E., Data-Driven
Thesis, Department
University, 1981.

Computing .$y stems : A Survey. ,
of Computer Science, Wright

M.S.
State

7. Swan, R.J., et al., "The Implementation of the Qn*

Multi-Microprocessor," Proceedings of the National Computer
Conference, Dallas, TX, 1977.

8. Trealeaven, P.C., Brownbridge, D.R., and Hopkins,R.P.,
nData-Driven and Demand-Driven Computer Architecture,"
Computing Surveys, Vol. 14, No. 1, March 1982.

9. Welch, H.O. and Moquin, W.A., "An Analysis of a Multicache
Shared Memory Ring Interconnection," Proceedings of the IEEE
Real-Time Systems Symposium, 1982.

10. Weitzman, C., Distributed
Prentice-Hall 1980.

Micro/Minicomputer Systems.,

43

Biographical Sketches

James Edward McDonald was born in Troy, Ohio on August 18,
1950. He graduated from the University of Cincinnati in 1973 with
a B.S.E.E. degree. He is currently finishing thesis work toward
a M.S. Computer Science degree at Wright State University,

,Dayton, Ohio.

In June 1973 he began an engineering career at the Avionics
Laboratory, Wright Patterson Air Force Base. Early career duties
involved military laser measurement devices. Current duties
include the development of system avionics support systems that
involve real-time computer architectures. He has published two
papers in this and related fields and has authored one technical
report with another in progress. Mr. McDonald has one invention
disclosure and is a registered professional engineer and a member
of IEEE.

Duane~ Hague was born in Akron, Ohio on June 22, 1945. He
graduated from the University of Akron in 1973 with a B.S.E.E
degree. After graduation, Mr. Hague began a career at the
Avionics Laboratory, Wright Patterson Air Force Base.

Early career achievements include hardware developments concerning
digital timing and recording for inertial navigation systems and
airborne computers. current career objectives include avioncs
support system design for VHSIC based systems. Mr. Hague has
published several technical reports in related career technical
fields.

Richard Michael Wallace was born in Dayton, Ohio on December
26, 1957. He graduated from the University of Idaho in 1980 with
a B.S. degree. He is currently finishing course work toward a
M.S. Computer Science degree at the University of Dayton, Dayton,
Ohio.

After working for the University of Dayton Research Institute,
Dayton, Ohio and System Architects Inc., Dayton, Ohio in the
airborne ECM & ECCM modeling areas, Mr. Wallace began his
computer scientist career at the Avionics Laboratory in March
1983. His early career duties included the Air Force's test
management for the Tri-Service testing of the Army's Ada Language
System (ALS) and operating system software design review for the
Integrated Communications, Navigation, Identification, Avionics
(ICNIA) Program. His current duty is software development manager
for the VHSIC Hardware Design Language (VHDL).

